Impact of Motor Impairment on Full-Screen Touch Interaction

karlwiegand.com/csun2015

Karl Wiegand and Rupal Patel **Northeastern University (USA)** March 6, 2015

Outline

- 1. Touchscreens and Accessibility
- 2. Study Description
- 3. Results and Observations
- 4. Summary and Conclusions

Touchscreen Prevalence

- First appeared in 1960s and 1970s (Johnson; Beck and Stumpe; Hurst)
- In mobile devices since 1990s (IBM Simon)
- Popularity exploded in 2007 w/ iPhone
- Apple sold 1.12+ million iPhones in 2007
- Now in almost every mobile device

Touchscreen Accessibility

- Motor impairment from MS, MSA, MD, etc.
- Can rebind gestures or create new ones
- Adjust click timing; enable switch control
- Avoid touch interaction (e.g. Siri or Now)

Common Limitations

- Programmatically prohibited from toggling or adjusting sliding functionality
- Users are prevented from modifying the location, size, shape, and orientation of many toolbars and buttons
- ★ Difficult to quantify the effects of these limitations on users and purchasing

Motivating Example: Swype

- Originally conceived as an interface for assistive communication
- Well-received by non-disabled users

Motivating Questions

- Most mobile devices now have touchscreens
- Increasing research on accessibility
 - Fitts and Steering Laws [Fitts, 1954; Accot and Zhai, 1996]
 - Swabbing/sliding is easier [Wacharamanotham et al, 2011]
 - Buttons need to be bigger [Chen et al, 2013]
- ★ What about functional compensation?
- ★ Can we learn realistic, layout-agnostic interaction patterns for an individual user?

Motor Optimization GUI (MoGUI)

MoGUI Example

Study Overview

- 2 cross-balanced sessions: taps vs. slides
- 4x4 grid = 16 locations
 - Pseudo-random shuffling (a la Latin Squares)
- 10 levels of 3 rounds each
- 1, 2, 3, ...10 balloons per round = 165 total
- Track all hits, misses, and timing

Participants

- Residents at the Boston Home
 - Various levels of speech and motor impairments
 - 10 females and 5 males
 - Ages 35 71 (mean of 56)
- 8 right-handed; 7 left-handed (3 due to MS)
- All were familiar with touchscreen tablets, but only 8 regular users (7 iPads, 1 Kindle)

Method

- 10.1" Android tablet (ASUS Transformer)
- Comfortable, landscape position s.t. all areas were fully reachable
 - 9 users preferred a 45-degree angle on a table
 - 1 user preferred a lowered table and flat tablet
 - 2 users preferred the tablet in a wheelchair mount
 - 2 users preferred the tablet in their lap
 - 1 user cradled the tablet in one arm
- Choice of finger or stylus
 - 6 wanted stylus, but needed it positioned

Interview Questions

- 1. Did you find any areas of the screen easier or more difficult to reach than others?
- 2. Did you prefer tapping, sliding, a combination of both, or neither?
- 3. Were the balloon targets too big or small?
- 4. What would you like to see improved in touchscreen tablets?

Variability: Multiple Taps (LH)

Variability: Finger Dragging (RH)

Variability: Hand Resting (RH)

Variability: Thumb Usage (RH)

Results: Misses by Handedness

Left

Right

Overlays from all sessions

Results: Locations by Handedness

Mean speed-to-target in pixels/second

Results: Directions by Handedness

Mean speed-to-target in pixels/second

Participant Feedback

- 3 users preferred tapping; 5 preferred sliding; 5 preferred a combination of both; and 2 had no preference
- 10 users noted that sliding required planning
- Overall, 8 participants felt that sliding felt "faster" and "easier," but for short distances
- Randomness prevented motor learning

Study Observations

- Varied tablet and hand/arm positions
 - Tablet being held, flat/tilted on lap, on desk, tilted on table, held in wheelchair mount
 - Needed to disable auto-rotation for 1 user
 - Use of fingers, thumb, stylus, and knuckles
- Ghost tapping, spastic tapping, stylus friction, and finger humidity
- Repeated margin activation and triggering of Google Now functionality

Summary

- Sliding not significantly faster than tapping for arbitrary targets; no motor learning
 - 16% accidental slides; 43% accidental taps
- High variance in individual motor patterns; weak correlations by handedness
 - Gamified calibration
- Static improvements through personas:
 - \circ Handedness \rightarrow margins, button locations
 - Tap/slide preferences \rightarrow input sensitivity

Thank you for listening!

karlwiegand.com/csun2015

Special thanks to the Continuous Path Foundation and the National Science Foundation (Grants #HCC-0914808 and #SBE-0354378).

