ABCI Workshop 2013: Language Model and Architecture for RSVP-iconCHAT

Karl Wiegand Northeastern University Boston, MA USA January 14, 2013

My Background

- Computer science Ph.D. student
- Natural language processing (NLP)
- Artificial intelligence (AI)
- Applications to augmentative and alternative communication (AAC)

Outline

- 1. Constraints and approach
- 2. Interface and demo
- 3. Language model
- 4. Current architecture
- 5. Application to Unlock

Constraints and Approach

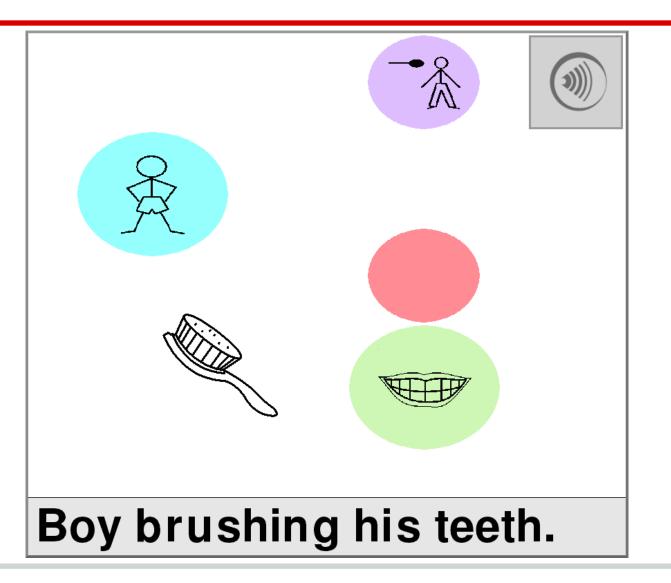
Constraints:

- 1. Single input signal (P300)
- 2. Icon-based AAC

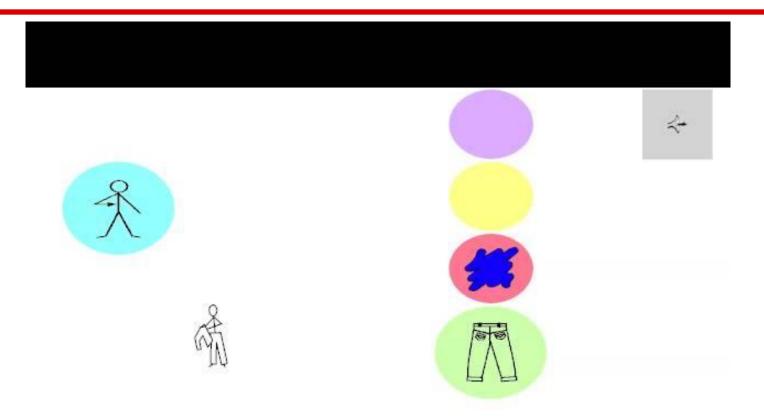
Approach:

- 1. Event timer
- 2. Semantic frames

Semantic Frames


- Actions are central to messages (Fillmore, 1976)
- Verbs have "frames" with semantic roles:

Give (Agent, Object, Beneficiary)


- WordNet, FrameNet, "Read the Web"
- Verb-first message construction (Patel et al, 2004)

• Any order in RSVP-iconCHAT

Interface

Demonstration

I wear blue jeans.

Language Model

- predict(role, state): listof([word, probability])
- Semantic grams (Wiegand and Patel, 2012)

"I like to play chess with my brother."

brother, chess	brother, i	brother, like
brother, play	chess, i	•••

brother, chess, i	brother, chess, like	
brother, chess, play	chess, i, like	
chess, i, play	•••	

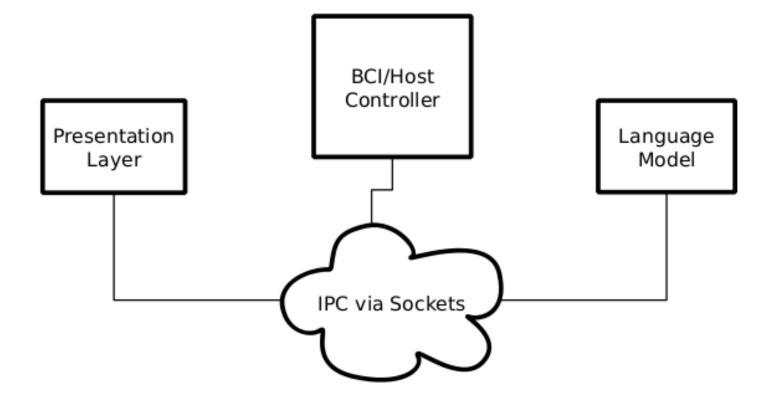
LM Training

1. Choose a corpus:

"Blog Authorship Corpus"

"Crowdsourced AAC-Like Corpus"

- 2. Split sentences and remove stop words
- 3. Count sentence lengths
- 4. Stem and count sem-grams


LM Algorithm

- 1. Tag closed vocabulary with possible roles
- 2. Select statistics for closed vocabulary
- 3. Get words from target role
- 4. Generate sem-grams from current roles
- 5. Convert sem-gram counts into probabilities
- 6. Reorder and return

More LM

- Semantic frames have syntactic forms
- First-word prediction is based on 1-grams
- Roles have uniform selection probability
- How do we detect wrong selections of a role? Of a word?

Current Architecture

Architecture Details

BCI/Host Controller ("The Brain")

• Control loop and signal processing

Presentation Layer (Client)

• User interaction -- images and keyboard

Language Model (Client)

- Oval and word prediction
- Semantic selections to syntactic phrase

Runtime Process: LM

- 1. Cache vocabulary statistics
- 2. Connect to the host controller
- 3. Wait for a request header:

"Oval probabilities" -- None, current_state "Icon probabilities" -- oval, current_state "Syntactic utterance" -- current_state

Runtime Process: Presentation

- 1. Connect to host controller
- 2. Wait for a request header:

"Start event loop" -- [oval/icon, bitcode] "Pause event loop" "Stop event loop" "Made decision" -- [oval/icon, bitcode] "Reset event loop" -- [oval/icon, bitcode]

Runtime Process: Host

- 1. Initialize gTec hardware
- 2. Initialize BCI modules
- 3. Receive connections from Client modules
- 4. Do:
 - a. Query LM for oval probabilities
 - b. Reorganize display order of ovals
 - c. Send display order to Presentation
 - d. Detect P300
 - e. Query LM for icon probabilities
 - f. Reorganize display order of icons
 - g. Send decision to Presentation
 - h. Repeat 4a 4g until user selects Speak...

Runtime Process: Host (cont.)

- i. Query LM for syntactic utterance
- j. Send utterance to Presentation
- k. Reset Presentation
- I. Go to 4a...

Project Management

- Git repository on BitBucket
- Task management via Asana
- Schedules in Google Calendar
- Meeting notes in Google Drive
- Code backups, relevant papers, and meeting board photographs in CSLftp

Implementation Details

- IPC is via TCP/IP packets
- Shared network packet structure
- Controller uses Matlab
- Presentation and LM use Python, Twisted, and either Pygame+SDL or Pyglet+OpenGL
- Test Controller uses Python+Kivy+Twisted

Application to Unlock

• P300 design is different than SSVEP design

• Semantic frames:

- Divide sentences
- Free order construction
- Semantic to syntactic mapping
- Semantic grams:
 - Free order prediction
 - Require applicable corpus

• IPC is nice with a standard packet structure

Thank you for listening!

Thanks to Dr. Rupal Patel, Dr. Deniz Erdogmus, and the National Science Foundation (Grant #0914808).

