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Dedicated to everyone who still struggles to communicate.
 

Don’t stop trying.
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A B S T R A C T
 

Thesis: Intelligent interfaces can mitigate the need for lin­
guistically and motorically precise user input to enhance 
the ease and efficiency of assistive communication. 

Augmentative and alternative communication (AAC) systems are 
used by people with speech impairments severe enough to preclude 
the use of spoken communication. While communication systems for 
non-disabled users often implement intelligent prediction, correction, 
and behavior adaption, current AAC systems are relatively passive 
conduits for translating user intentions into spoken output. This dis­
sertation seeks to shift the burden of communication from the user to 
the system by leveraging knowledge of the user’s abilities, usage pat­
terns, and contextual needs. The ultimate goal is to create an assistive 
communication prosthesis that enables users to seamlessly engage 
in timely and meaningful interactions in educational, vocational, or 
social settings. 

This dissertation makes the following contributions to the advance­
ment of intelligent interfaces for assistive communication, especially 
in the areas of natural language processing (NLP) and human-computer 
interaction (HCI): 

1. A word-level language model — semantic grams — that bridges 
the gap between syntax and semantics by leveraging an au­
thor’s own syntactic delimiters of semantic content. This model 
is more effective than similar n-gram-based language models 
for prediction tasks with unusual ordering or syntax. 

2. An empirical comparison of contextual language predictors, show­
ing that the use of statistics from a global corpus, such as the 
New York Times, is sub-optimal. Instead, situational context can 
provide more accurate background probabilities for pervasive 
speech and language processing tasks. 

3. Results and observations from a touchscreen tablet study with 
current and potential AAC users, quantifying the challenges 
faced by people with upper limb motor impairments and show­
ing how they can be addressed through intelligent interfaces. 

4. Three user-driven interface designs and prototypes, including 
an approach to icon-based AAC that can be controlled effec­
tively with a single input signal and leverages semantic frames 
to accommodate different screen sizes and user abilities. 
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1
I N T R O D U C T I O N 

background and motivation 

There are many ways to model communication. Most modern models 
of communication are derived from a foundation model called SMCR. 
Originally intended for use with telecommunications and cryptogra­
phy, the SMCR model of communication consists of four key com­
ponents: a Source, a Message, a Channel, and a Receiver [100, 97, 7]. 
In this type of model, the quality and integrity of a transmitted mes­
sage can be compromised by distortion to any component, regardless 
of whether the communication involves face-to-face interaction, tele­
phones, radios, or assistive devices. It is not uncommon for static or 
background noise, which can be viewed as distortion of the channel, 
to interrupt a telephone call or radio transmission. With spoken com­
munication, deafness or other hearing impairments could be viewed 
as distortion to the receiver and pose similar challenges. 

For over 2 million Americans with craniofacial deformities or neu­
rological conditions, however, it is the message creation process it­
self that can be challenging. Natural human speech is not a viable 
mode of communication for many people who have had a stroke or 
have cerebral palsy (CP), multiple sclerosis (MS), multiple system at­
rophy (MSA), or amyotrophic lateral sclerosis (ALS) [70]. Many of 
these individuals also have physical impairments that limit the use of 
sign language or written forms of communication [8, 59]. These indi­
viduals rely on augmentative and alternative communication (AAC) 
to interact with the world around them. An estimated 53% of people 
with CP [41] and 75% of people with ALS [5] use AAC. In the general 
population, approximately 1 to 15 people of every 1,000 may require 
AAC at some point in their lives [8, 10, 61]. AAC systems, which 
range from physical letter boards to dedicated speech output devices, 
are the primary way for these individuals to convey their thoughts, 
needs, and desires to those around them. 

AAC methods include: 

• Unaided techniques, in which the user relies on gestures, facial 
expressions, vocalizations, or sign languages; 

• Low-tech displays or boards, in which the user composes mes­
sages by selecting a series of letters or icons; and 

• Speech-generating devices (SGDs), sometimes called voice-output 
communication aids (VOCAs), in which the user’s selections on 
an electronic system are spoken aloud using speech synthesis. 

For communication scenarios involving computerized systems, the 
risks of distortion can be alleviated by endowing components with 
some level of user-specific, adaptive, or context-aware “intelligence.” 
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Almost every communication technology available today has some 
level of intelligence: desktop computers, video game consoles, and 
even Web browsers are now designed to accommodate multiple users 
with different preferences and capabilities. Similarly, personal mobile 
devices are increasingly adept at detecting the user’s location and 
time of day in order to provide highly relevant information with min­
imal prompting. Vocabulary usage and typographical error statistics 
also aid in accelerating text entry on these systems. 

In contrast, current AAC systems are relatively passive conduits 
for translating user intentions into spoken output. Communicating 
via these systems is slow and physically demanding because it re­
quires considerable effort to search for, and navigate to, desired items 
[112]. While frequency statistics and natural language prediction are 
used in letter-based AAC systems, they are largely absent from icon-
based AAC systems, and no commercial devices to date have made 
use of adaptive or context-sensitive information. Reconceptualizing 
AAC as an active, adaptive technology that leverages multiple infor­
mation sources to facilitate and predict user intentions may have a 
profound impact on the ease, efficiency, and effectiveness of assistive 
communication. 

Current VOCAs can be grouped into two general categories: sub-
lemma construction systems and super-lemma construction systems. 
Sub-lemma construction systems include those that use letter-based 
approaches, but also those based on phonemes [108], morphemes [4], 
or any other units of construction that are more linguistically gran­
ular than lemmas. Super-lemma construction systems include those 
that use word-based approaches, but also those that leverage text or 
images to represent combined lemmas, phrases, or full utterances. 

Dominant among sub-lemma construction systems is the letter-based 
orthographical approach; for the purposes of this document, the term 
“letter-based” will be used to generally refer to sub-lemma construc­
tion methodologies. Similarly, the majority of super-lemma construc­
tion systems use icons or symbols, either primarily or as cues to assist 
in visual search; the term “icon-based” will be used to generally indi­
cate a reliance on images, words, or phrases. “Icons” will also be used 
to refer to both symbols and words because many systems provide 
users with the option of displaying any combination of images and 
associated text labels. 

An advantage of letter-based AAC systems is that literate users 
can theoretically create any possible utterance in the target language; 
however, these systems can be slow and fatiguing (2 - 5 words per 
minute) because of the number of selections necessary to complete 
a message [105]. Additionally, many individuals who have sustained 
impairments since birth have poor or limited literacy skills [10]. Al­
though icon-based AAC systems are typically not fully generative, 
they can be advantageous because they have the potential to support 
faster and more efficient message construction by allowing whole 
words and phrases to be accessible via a single keystroke [106]. 

Aided message construction is often an order of magnitude slower 
than spoken interaction: approximately 15 words per minute (WPM) 
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compared to over 150 WPM for speakers of American English [11, 105, 
36]. Thus, icon-based systems are often preferred over letter-based 
systems for face-to-face conversation and other real-time scenarios to 
minimize communication delay. They are also useful for non-native 
speakers and individuals with limited or emerging literacy skills [10], 
such as young children or those with language impairment due to 
neurological conditions. 

Although the average college student uses approximately 5,000 
unique words per day [73], most icon-based AAC systems have much 
smaller vocabularies, often with several hundred words or phrases 
[11]. Given that the vocabulary cannot be displayed all at once, typi­
cal icon-based AAC systems organize their vocabularies as arrays of 
icons in hierarchically nested pages categorized according to lexical, 
semantic, or thematic similarity [69]. Message construction in these 
systems requires users to complete two major tasks: (1) to search for 
desired icons by navigating through the available vocabulary, and (2) 
to select the desired icons. When users have finished composing an 
utterance, it can be sent to a text-to-speech (TTS) engine for vocaliza­
tion. 

problem statement 

Current icon-based AAC systems place the burden of communication 
on the user and make three fundamental assumptions: 

1. Prescribed Order: Users will select items in a specific order, 
such as the syntactically “correct” one; 

2. Intended Set: Users will select exactly the items that are desired, 
no fewer or more; and, 

3. Discrete Entry: Users will make discrete movements or selec­
tions, either physically or with a cursor. 

Prescribed Order 

Current AAC methods passively preserve the order of selected icons 
in the output, regardless of syntactic accuracy. Thus, if a user selects 
“hamburger,” “eat,” “I,” and “want,” the system would output “ham­
burger eat I want” rather than the syntactically accurate order for 
active-voice American English: “I want to eat a hamburger.” Detect­
ing semantic ambiguity becomes a problem when icons are selected 
in an unusual order. While some predicates are non-directional with 
regard to the subjects and objects that they allow (e.g. “Alice is near 
Bob” is semantically equivalent to “Bob is near Alice”), some pred­
icates are directional (e.g. “Alice likes Bob”) and word order affects 
meaning. 

The Prescribed Order assumption is problematic for a number of 
reasons. First, there is evidence that users do not always select icons 
in expected orders [113]. This may be because of motor impairments, 
which often accompany speech impairments, that prevent users from 
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making complex or repetitive movements. Second, because commu­
nication with AAC devices is so much slower than spoken communi­
cation, users may maximize speed by constructing simplified or tele­
graphic utterances [134, 78]. Third, many users may have limited or 
emerging literacy skills in the target language, making them unfamil­
iar with all of its syntactic rules. Regardless of the reason, outputting 
unusual or incomplete utterances has social implications: listeners 
may have diminished expectations or perceptions of the user’s abili­
ties [1]. 

Intended Set 

Text entry systems on mobile devices often use dictionary-based ap­
proaches to account for scenarios in which the user types fewer or 
more letters than desired; however, such strategies are often not avail­
able for icon-based AAC systems. There are two major issues: (1) sub­
set completion, in which the system suggests additional items after 
the user has selected a subset of desired icons; and (2) superset prun­
ing, in which the system removes undesirable items that the user may 
have accidentally selected. Previous efforts in subset completion have 
either focused on missing function words, such as prepositions and 
conjunctions [72], or have operated under the Prescribed Order as­
sumption [12, 114, 115]. Although AAC users can manually add and 
remove icons prior to speech synthesis, automated strategies have 
not typically been integrated into current devices. The result is that 
AAC message construction is slow, impeding real-time interaction, 
and users with fine motor impairments are burdened with the task 
of trying to avoid accidental selections. 

Discrete Entry 

Current icon-based AAC systems require discrete entry of each de­
sired icon. Movements are often executed via a cursor that is manipu­
lated physically, such as with a finger, hand, or eye; however, research 
has been conducted on other ways of manipulating an on-screen cur­
sor, including vowel sounds [31, 15] and brain waves [133]. The as­
sumption of Discrete Entry implies that selected icons are important, 
but the path of the cursor between icons is irrelevant. Recent work in 
letter-based text entry has explored the use of continuous and relative 
motion to shift the burden of lexical disambiguation from the user to 
the system [30, 90]. Several continuous text entry systems have been 
commercially successful for non-AAC users, especially on mobile 
platforms [51, 53]. Adapting these techniques for icon-based AAC 
involves adding semantic components, but may reduce the physical 
burden faced by users with motor impairments when making naviga­
tion and selection movements. Additionally, continuous motion input 
would support stronger integration with input mechanisms that are 
naturally continuous, such as vowel sounds, brain waves, or electro­
muscular signals. 
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Recent advances in touchscreen sensitivity, brain-computer inter­
faces, and miniaturized location sensors are just some of the reasons 
why challenging these three assumptions can allow us to rethink 
the design of assistive communication technology. This dissertation 
aims to endow assistive communication systems with enhanced in­
telligence to support free-order icon selection, unordered prediction 
and error correction, and continuous motion input. Our approach 
leverages both semantic knowledge and contextual cues to reduce 
physical effort and improve the efficiency of message construction. 

outline 

The thesis of this dissertation is: 

Intelligent interfaces can mitigate the need for linguisti­
cally and motorically precise user input to enhance the 
ease and efficiency of assistive communication. 

This dissertation makes two types of contributions: theoretical and 
applied. Part 1 presents the theoretical contributions: algorithms and 
design approaches that can “mitigate the need for linguistically and 
motorically precise user input.” Chapter 2 presents semantic grams, 
a language model that can accommodate word prediction without 
assuming a particular order. Chapter 3 describes how situational con­
text can be used to improve unordered prediction and allow for ap­
proximate word selections. In Chapter 4, quantitative results from a 
user study are analyzed, showing how touchscreen interactions can 
be improved through personalization. 

Part 2 shows how these algorithms and approaches can be ap­
plied in practice and describes some of the effects of the current 
work towards enhancing the “ease and efficiency” of assistive com­
munication. Three prototypes are described, each intended for differ­
ent categories of AAC users, depending on their language and mo­
tor capabilities. Chapter 5 presents RSVP-iconCHAT, a semantic ap­
proach to icon-based message construction designed for users with 
impairments severe enough to necessitate switch interaction. Chap­
ter 6 describes SymbolPath, an AAC system that enables continuous 
motion, free order, and superset selection of icons for users with 
mild-to-moderate language and motor impairments. Finally, Chap­
ter 7 presents DigitCHAT, a small-footprint, letter-based AAC system 
for literate users with minimal upper limb motor impairments that 
supports AAC input at conversational speeds. 
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Part I 

T H E O RY 

Summary of contributions in the areas of natural language 
processing (NLP) and human-computer interaction (HCI): 

1. Semantic grams, or sem-grams, an unordered lan­
guage model that leverages syntactic markers of se­
mantic content for utterance-based, subset-completion 
tasks. 

2. An empirical comparison of contextual language pre­
dictors showing that situational context provides more 
accurate background probabilities for pervasive speech 
and language processing tasks. 

3. Results from a study with current and potential AAC 
users, quantifying the challenges they face with mod­
ern touchscreen technologies and describing how those 
difficulties can be addressed. 
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2
U N O R D E R E D S E L E C T I O N 

2.1 overview 

Most icon-based AAC devices require users to formulate messages in 
syntactic order. Reliance on syntactic ordering, however, may not be 
appropriate for individuals with limited or emerging linguistic skills. 
Some of these users may benefit from unordered message formula­
tion accompanied by automatic message expansion to generate syn­
tactically correct messages. Leveraging word prediction to increase 
communication speed in unordered message formulation, however, 
requires new methods of prediction. This chapter describes a novel 
approach to word prediction using semantic grams or “sem-grams,” 
which provide relational information about message components, re­
gardless of word order. Performance of four word-level prediction 
algorithms, two based on sem-grams and two based on n-grams, 
are compared on a conversational corpus. Results showed that sem­
grams yield accurate word prediction, but lack prediction coverage. 
Hybrid methods that combine n-gram and sem-gram approaches may 
be viable for unordered prediction on icon-based AAC devices. 

2.2 motivation 

Many AAC users with limited or emerging literacy skills use icon-
based systems, in which vocabulary items are selected in syntactic 
order to formulate messages. This syntactic bias stems from histori­
cal assumptions that AAC message formulation could be viewed as 
a corollary to written language, which can be sent directly to speech 
synthesizers. Selecting vocabulary items serially and in syntactic or­
der can be physically and cognitively arduous depending on the 
icon organization scheme [112]. Moreover, AAC productions are of­
ten syntactically incomplete or incorrect [113], perhaps for efficiency 
or due to limited linguistic abilities. For many users, unordered vo­
cabulary selection may alleviate the physical and cognitive demands 
of message formulation and shift the onus of generating syntactically 
complete and accurate messages onto the AAC device. Although un­
ordered message formulation schemes have been proposed [46, 85], 
prediction has not been incorporated. This chapter presents an ini­
tial step toward text prediction from a set of unordered vocabulary 
selections. 

Rate enhancement is a commonly cited issue in AAC because aided 
message formulation rates are an order of magnitude slower than 
spoken interaction [9]. Prediction is a common rate enhancement 
technique. Text prediction for AAC has primarily focused on well-
ordered, syntactic input and has leveraged both semantic character­
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istics [20, 57, 81] and variations of n-grams [56, 110]. For example, 
semantic networks and linguistic rules have been used to predict 
missing function words and apply affixes to content words [72]. The 
use of n-grams to predict text entry has been extensively studied at 
both the level of letters [14, 102, 39] and words [12]. For example, 
memory based language models have been used to predict missing 
content words using tri-grams [114]. Although some recent work has 
attempted to loosen syntactic requirements by including either left 
or right context, some directional context has historically been re­
quired [115]. Furthermore, word prediction approaches in AAC have 
typically been implemented for letter-by-letter message formulation 
[48, 49, 54, 37]. The contributions in this chapter are fundamentally 
novel in that: (1) no syntactic order is implied or required during ei­
ther training or testing, and (2) the prediction is implemented at word 
level to accommodate icon-based interaction. 

Previous work in information retrieval has explored relationships 
between words with regard to distance [60, 74, 63], grammatical pur­
pose [111, 2], and semantic characteristics [121, 26, 35], particularly 
for retrieving highly relevant documents or passages. One study in 
this area resulted in an approach called s-grams, a generalization of 
n-grams, in which the distance between words directly affects the 
strength of their semantic relationship [40]. Another approach to pre­
dicting semantically related words is to use collocation to indicate 
topic changes within a moving window of fixed length [71]. Rather 
than relying on distance to indicate relationship strength, the work in 
this chapter combines frequency analysis with syntactic indications 
of semantic coherence. 

2.3 semantic grams 

Semantic grams, or “sem-grams,” provide an alternative approach 
to quantifying the relationship between co-occurring words. A sem­
gram is defined as a multi-set of words that can appear together 
in a sentence. In English, a sentence is one of the smallest units of 
language that is typically both coherent, in terms of semantic con­
tent, and cohesive, in that the contained semantic content is inter­
related. Additionally, because sentences are demarcated with syn­
tactic cues such as punctuation, semantically related items can be 
efficiently identified using sentence boundary detection [47]. Thus, 
sem-grams leverage sentence-level co-occurrence to extract semantic 
content at different levels of granularity, depending on the allowable 
lengths of multi-sets. Sem-grams can be viewed as non-directional 
s-grams with a uniform weight applied to all relationships between 
any words in a given sentence. 

In a sentence of length L, the number of n-grams of length n is 
given by the expression L − n + 3, which includes the beginning and 
ending n-grams that contain null elements. By contrast, the number 
of sem-grams of length n in a sentence of length L is given by the   

Lexpression . Thus, there will typically be many more sem-grams n
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of length n in a single sentence than n-grams of the same length. 
Unlike n-grams, however, it is unnecessary for sem-grams to contain 
null elements because a sem-gram of length S with a null element is 
equivalent to a sem-gram of length S − 1 without null elements. Sem­
grams of length one, containing a single word, are equivalent to the 
prior probability of that word. 

2.4 prediction algorithms 

Unordered word prediction poses the following problem: given a set 
of existing words E that have already been selected by a user and a set 
of candidate words C that the user may select from, which candidate 
word c ∈ C is the user most likely to select in order to complete 
the message? As an initial step toward addressing this problem, the 
following four algorithms, two based on sem-grams and two based 
on n-grams, are presented: 

s1 : naive bayesian sem-grams Given existing words E, rank 
all candidate words c ∈ C in descending order of probability accord­
ing to: 

 
P(c|E) = P(c) P(w|c) (1) 

w∈E 

S1 is a modification of the Bayesian ranking of sem-grams in that 
it assumes independence of existing words to each other, conditional 
on the given candidate word. Using true Bayesian probabilities for 
sem-grams, the probability of a candidate word would look like the 
following for each P(c|E), given w ∈ E and |E| = 3: 

P(c)P(w1|c, w2, w3)P(w2|c, w3)P(w3|c) (2)
P(w1, w2, w3) 

The exact form of this equation depends on the ordering branch 
chosen, but it also requires joint probabilities for sem-grams of dif­
ferent lengths. By assuming conditional independence of the existing 
words to each other, S1 only requires sem-grams of length 2. 

s2 : independent sem-grams Given existing words E, rank all 
candidate words c ∈ C in descending order of probability according 
to: 

 
P(c|E) = P(w, c) (3) 

w∈E 

The approach of S2 is a “hand of cards” approach that treats the 
message formulation task as a random drawing of sem-grams from a 
pool of available sem-grams. While the formula above is specified for 
sem-grams of length 2, it can be extended to support sem-grams of 
any length. 
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n1 : naive bayesian n-grams Given existing words E, rank all 
candidate words c ∈ C in descending order of probability according 
to: 

P(c|E) = P(c) P(w|c) (4) 
w∈E 

N1 is a copy of S1, except that the definition of the joint probability 
P(w, c) includes the counts for n-grams that contain both w and c, 
regardless of order. This algorithm was designed to compare whether 
the information provided by n-grams can be used to approximate 
the information provided by sem-grams. N1 assigns high ranks to 
candidate words that are likely to appear adjacent to all other words 
in the sentence. 

n2 : applied n-grams Given existing words E, rank all candidate 
words c ∈ C in descending order of probability according to: 

 
P(c|E) = P(w, c) (5) 

w∈E 

N2 is designed to leverage the strength of n-grams and rank can­
didate words based on the probability of them appearing adjacent 
to any of the existing words. N2 uses the same definition of joint 
probability as N1, where P(w, c) includes the counts for n-grams that 
contain both w and c, regardless of order. 

2.5 corpus selection and preparation 

Given the lack of large corpora of AAC message formulations [55], 
approximations have often been used [109, 116]. The Blog Authorship 
Corpus [96] was selected because it is freely available and tends to be 
written in an informal style that emulates conversational speech. The 
corpus is both large and diverse, comprising over 140 million words 
written by 19,320 bloggers in August 2004. The bloggers ranged in age 
from 13 - 48 and were equally divided between males and females. 

To prepare the corpus, all blog posts were extracted as ASCII text. 
Every blog post was split into sentences using the PunktSentenceTo­
kenizer [47] of the Natural Language Toolkit (NLTK) [13] and then 
split into words using the following regular expression: 

\w+(\w*([\-\’\.]\w+)*)* 

English stop words were removed according to a popular list [89] 
and remaining words were stemmed using the NLTK’s PorterStem­
mer, which is a modified implementation of the original Porter stem­
ming algorithm [87]. Finally, all stemmed words were examined for 
membership in a stemmed American-English dictionary [120]. Any 
stemmed words not found in the dictionary were removed to further 
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constrain the vocabulary and account for spelling errors and nonsen­
sical text. 

The corpus was then randomly split into a training and testing 
set, with 80% of the authors (15,451) being placed in the training 
set and 20% of the authors (3,871) being placed in the testing set. 
The training set comprised over 7 million sentences written by 7,682 
males and 7,768 females with a combined average age of 22 years. 
All n-gram and sem-gram statistics, with plus-one smoothing, were 
gathered using only sentences in the training set and both n-grams 
and sem-grams were limited to a word length of 2 (bi-grams). 

2.6 evaluation 

Testing was conducted on 2,000 sentences that were randomly se­
lected from the test corpus. The same processing steps used during 
training were performed on the test sentences: stop words were re­
moved, the remaining words were stemmed, and all stems not in the 
dictionary were filtered out. To avoid run-on sentences and sentence 
boundary detection errors, all test sentences were also truncated to 
a maximum of 20 words. The words in each test sentence were then 
shuffled and one word was removed at random and designated as the 
target word. Each of the four algorithms were provided the shuffled 
words as input; as output, each algorithm attempted to identify the 
target word by generating a ranked list of candidates. 

In addition to the shuffled set of input words, each algorithm re­
quired a seed list of candidate words. Ideally, all known words in 
the corpus would be used as candidate words. To constrain the com­
putational requirements, the two algorithms based on n-grams (N1 
and N2) were provided with the list of most frequently co-occurring 
words that appeared as n-grams with any of the set of input words, 
limited to the top 10 n-grams for a given input word. Similarly, each 
sem-gram algorithm (S1 and S2) received a list of most frequently 
co-occurring words that appeared as sem-grams with any of the set 
of input words, limited to the top 10 sem-grams for a given input 
word. With a limit of 19 input words (20 minus the target word), each 
algorithm received at most 190 unique candidate words to rank. 

Two primary metrics were used to quantify the performance of 
each algorithm: (1) a boolean value that was true if the output list 
contained the target word in any position, indicating that the target 
word had been successfully predicted; (2) if the algorithm success­
fully predicted the target word, the algorithm received a positive in­
teger score corresponding to the position of the target word in the 
output list, with lower scores indicating more accurate prediction. For 
example, if an algorithm suggested the target word as the first item in 
its ranked list, it received a score of 1; if it suggested the target word 
as the second item in its ranked list, it received a score of 2. The out­
put lists of each algorithm were truncated to the first 100 items; thus, 
if an algorithm’s output list contained the target word in a position 
after 100, it was marked as failing to predict the target word. 
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Table 1: Summary of N-Grams vs. Sem-Grams 

N1 N2 S1 S2 

Sentences 2000 2000 2000 2000 

# Predicted 647 649 435 435 

% Predicted 32% 32% 22% 22% 

Avg Score 16.26 19.70 9.04 12.67 

Score SD 16.15 19.65 7.40 10.04 

MRR 0.0643 0.0412 0.0737 0.0556 

MRR SD 0.1667 0.2018 0.1335 0.1746 

A third metric, Mean Reciprocal Rank (MRR), was used to obtain 
an overall picture of each algorithm’s performance by merging accu­
racy and coverage. MRR is the average of reciprocal ranks (i.e. scores) 
over all evaluated sentences, where rank corresponded to the position 
of the target word in the output list, and was calculated as: 

2000 

MRR = 
1 1 

(6)
2000 ranki

i=1 

If the target word did not appear in the first 100 items, a reciprocal 
rank value of zero was used. 

2.7 results 

The n-gram algorithms successfully predicted 32% of the 2,000 test 
sentences while the sem-gram algorithms successfully predicted 22% 
(Table 3). Although both n-gram algorithms performed similarly, N1 
consistently predicted the target word more accurately than N2. On 
average, N1 suggested the target word as the 16th word in its ranked 
list, where N2 suggested the target word as the 20th word in its list. 
While the sem-gram algorithms predicted fewer sentences than the 
n-gram algorithms, they were almost twice as accurate on sentences 
that they did predict. On average, S1 suggested the target word as 
the 9th word in its ranked list; for S2, the target word was the 13th 
item. The results by MRR were similar: S1 outperformed N1, while 
S2 outperformed N2; however, N1 did show better performance than 
S2 by this metric. 

To further compare the effectiveness of sem-grams and n-grams, 
sentences were grouped according to their input length, from 1 to 19 
words, and statistics were gathered for each algorithm on each sen­
tence length (Table 2). For test sentences in which the algorithms were 
only given a single input word, both n-gram algorithms ranked the 
target word at least one full ranking higher than either sem-gram al­
gorithm, thus giving more accurate predictions. For all other sentence 
lengths, the sem-gram algorithms were more accurate. Between the n­
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Table 2: N-Grams vs. Sem-Grams by Input Sentence Length 

# Words N1 % N1 Avg S1 % S1 Avg N2 % N2 Avg S2 % S2 Avg 

1 20.88% 3.44 12.05% 4.47 20.88% 3.42 12.05% 4.47 

2 26.55% 6.07 19.47% 5.89 26.55% 6.32 19.47% 6.23 

3 22.22% 7.64 16.89% 6.87 22.22% 9.82 16.89% 9.84 

4 32.11% 10.46 22.94% 7.62 32.11% 11.91 22.94% 9.94 

5 31.25% 12.13 21.88% 6.14 31.25% 14.02 21.88% 9.14 

6 38.18% 15.25 26.67% 8.75 38.18% 17.68 26.67% 12.11 

7 42.86% 16.17 29.46% 9.52 42.86% 21.77 29.46% 12.73 

8 39.60% 18.08 25.74% 11.15 39.60% 22.00 25.74% 15.73 

9 29.11% 19.13 20.25% 11.31 29.11% 23.48 20.25% 17.88 

10 44.74% 24.47 35.53% 10.52 44.74% 23.56 35.53% 16.22 

11 38.46% 28.55 26.92% 15.21 38.46% 26.80 26.92% 17.93 

12 46.00% 23.39 14.00% 13.71 46.00% 41.26 14.00% 9.14 

13 38.46% 24.47 25.64% 14.30 38.46% 34.07 25.64% 15.90 

14 29.41% 26.30 14.71% 10.80 29.41% 39.10 14.71% 26.20 

15 46.67% 32.14 20.00% 16.17 46.67% 36.79 20.00% 15.17 

16 47.62% 25.70 28.57% 12.83 47.62% 30.50 28.57% 12.67 

17 53.85% 23.14 38.46% 12.20 53.85% 35.14 38.46% 21.40 

18 40.95% 38.35 25.71% 13.56 42.86% 43.07 25.71% 25.11 

19 38.46% 23.80 38.46% 11.00 38.46% 52.40 38.46% 32.00 

Note: % = Prediction coverage; Avg = Average prediction score. 

gram algorithms, N1 consistently predicted the target word more ac­
curately and more often than N2. Similarly, S1 consistently predicted 
the target word more accurately and more often than S2. 

For every input sentence length greater than one, S1 outperformed 
N1 in all gathered metrics. When comparing the prediction accuracy 
of N1 and S1, S1’s prediction accuracy was also more stable, with 
N1’s prediction accuracy continuing to degrade as the length of the 
input sentence increased (Figure 1). Note that lower values represent 
earlier prediction and thus higher prediction accuracy. 

2.8 discussion 

Message formulation using AAC devices has historically relied on 
selection of letters or words (icons) in syntactic order. This chap­
ter aimed to facilitate unordered vocabulary selection through the 
use of text prediction. Results indicate that word prediction for un­
ordered message formulation is viable using statistical approaches. 
Although the n-gram algorithms predicted a larger number of test 
sentences than the sem-gram algorithms, evaluation of the ranked 
output indicated that the sem-gram approaches were more accurate. 
Because n-grams assume that adjacent words are strongly related, it 
was expected that n-grams would provide more accurate prediction 
for shorter sentences; however, this advantage was not maintained as 
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Figure 1: Accuracy of N-Grams and Sem-Grams by Sentence Length 

sentence length increased beyond two words. Prediction accuracy is 
likely to be more important in AAC devices because the cognitive 
demands of choosing from prediction lists can sometimes outweigh 
rate enhancements [48, 49]. 

The use of bi-grams may have resulted in poor accuracy of the 
n-gram algorithms because there were many more sem-grams than 
n-grams of length 2. Increasing n-gram length, up to a cardinality 
equal to the number of sem-grams of length 2, could allow n-gram 
algorithms to potentially match or surpass the prediction accuracy 
of sem-grams. For unordered word prediction, however, this larger 
set of n-grams would need to be indexed in an order-independent 
manner which would further increase computational demands. Pre­
diction lags are unlikely to be tolerated by users as they engage in 
interactive tasks [37]. 

Of the two n-gram algorithms, N1 outperformed N2 on both pre­
diction coverage and accuracy. It was hypothesized, however, that N2 
would yield more accurate predictions because the target word was 
defined to be adjacent to at least one of the input words. It was ex­
pected that N1 would unfairly reward candidate words that had ap­
peared adjacent to each input word in the training set, while punish­
ing more desirable candidate words that had not appeared adjacent 
to some of the input words. Perhaps this bias was not evident in the 
current corpus because plus-one smoothing removed all zero prob­
abilities for adjacency likelihoods. Additionally, N1 may have been 
more successful because it favored candidates that were related to all 
input words rather than candidates that were strongly related to just 
a subset of the input words. 

Despite the encouraging prediction coverage of n-grams and the 
prediction accuracy of sem-grams, approximately two-thirds of the 
test sentences were not predicted by any of the algorithms. One possi­
ble explanation may relate to the decision to seed each algorithm with 
only the top 10 most frequent words that co-occurred with each input 
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word. Ideally, each algorithm would have considered all words in the 
vocabulary as candidate words; however, because there were almost 
100,000 unique stems in the vocabulary, the computational require­
ments were prohibitive for this initial implementation. The decision 
to use this sparse seeding strategy in combination with a prediction 
rank cut-off of 100 is also likely to be responsible for the extremely 
low MRR scores that we observed. Relatively high standard devia­
tions (SDs) for the MRR scores make these values especially difficult 
to compare with similar research results. An open empirical ques­
tion is whether increasing the seed values to include a larger set of 
co-occurring words would result in greater prediction coverage and 
potentially more comparable MRR scores. It should be noted, how­
ever, that while seeding sem-grams with more candidate words may 
improve prediction coverage, it is unlikely to increase prediction ac­
curacy for the n-gram approaches. 

Icon-based AAC devices typically have vocabularies with much 
fewer than 100,000 words, which may negate the need for seeding can­
didate words. For example, two commonly used icon sets, the Widgit 
Symbol Set and the Mayer-Johnson Picture Communication Symbol 
collection, each contain approximately 11,000 icons [122]. While a 
large dictionary was used to provide a conservative estimate of pre­
diction performance, it is possible that using a smaller and more 
representative AAC vocabulary would improve prediction coverage 
and accuracy. Restricting vocabulary size would also reduce computa­
tional demands, making it more feasible to use all vocabulary words 
as candidates. 

2.9 summary 

Semantic grams, or sem-grams, provide a promising approach to 
word prediction for AAC users who may benefit from unordered 
message formulation. Sem-grams make use of co-occurrence between 
words within a sentence to improve prediction accuracy. While n-
grams have historically provided a strong foundation for word pre­
diction in letter-by-letter systems, results indicate that they can also 
be used for unordered word prediction, although they are not as ac­
curate as sem-grams. A hybrid approach that seeds both types of 
algorithms with a superset of candidate words and merges the pre­
diction lists may simultaneously exhibit the wide prediction cover­
age of n-grams and the high prediction accuracy of sem-grams. Such 
a hybrid approach could enable unordered message formulation on 
icon-based AAC devices. 

Extensions of this work may be possible using the breadth of in­
formation available within well-documented and comprehensive cor­
pora. For example, while the Blog Authorship Corpus included age 
and gender information about each blogger, this information was not 
used in the present study. To tailor prediction to individual users, 
it may be possible to limit the available vocabulary and gram-based 
statistics to information gathered from users of similar age and gen­
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der. This may improve prediction accuracy for both n-gram and sem­
gram algorithms, as well as provide an approach to designing icon-
based AAC devices that can evolve and adapt to users as their needs 
and abilities mature, potentially even suggesting new vocabulary words 
as the users age. 
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3
C O N T E X T U A L P R E D I C T I O N 

3.1 overview 

Speech and language technologies benefit from contextual awareness, 
especially in the area of assistive communication. Historically, the use 
of context in language prediction and disambiguation tasks has pri­
marily focused on words in the same utterance. With the rapid ad­
vancement of mobile technologies, however, both written and spo­
ken language interaction can be augmented with information from 
other types of contextual predictors, such as calendar date and geo­
graphical location. It is generally agreed that knowledge of a specific 
author’s language patterns provides the most predictive power; how­
ever, author-specific corpora are not always available, especially for 
users with speech and motor impairments. While some research has 
been conducted in the area of linguistic content analysis by gender, 
age, and other demographic variables, there has been little work on 
quantifying the effects of context on language prediction. We com­
pared seven contextual cues (age, gender, day of the week, day of 
the month, month, city, and state) within two different corpora in 
order to determine the most reliable predictors of language usage 
when author-specific training samples are not available. Across three 
different metrics, we show that contextually sensitive language distri­
butions can often provide more useful predictions and significantly 
more accurate reflections of reality than global distributions; however, 
we also show that contextual cues must be chosen carefully to avoid 
introducing noise and degrading the performance of standard simi­
larity measures. The work in this chapter has implications for speech 
and language processing systems, especially personalized assistive 
communication, that rely on statistical distributions to predict or dis­
ambiguate intended word usage. 

3.2 motivation 

Nearly every language-related assistive technology, from AAC to au­
tomated speech recognition (ASR), relies on probability distributions 
of word usage [42, 43, 82, 131]. These distributions, sometimes called 
prior or background probabilities, are used to ensure effective pre­
diction or disambiguation of utterances. The most common sources 
for these distributions are currently large collections of global text, 
such as the New York Times [94] or Google’s N-Gram corpus [75]; 
however, many systems use the same global distribution for all users, 
regardless of the user’s demographics or situational context. 

As mobile technologies become more advanced and social networks 
more pervasive, users are increasingly interacting via spoken or writ­
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ten language in a variety of situations [36, 38]. Sensors have also be­
come smaller and more powerful, allowing mobile devices to gather 
multidimensional data. Understanding language usage patterns is es­
sential to enhancing the ease and efficiency of communication on 
these various platforms. 

While “context” has traditionally been used to refer to words within 
a target utterance, or surrounding utterances, ubiquitous sensor tech­
nologies now provide a richer set of contextual cues. For example, 
Global Positioning Systems (GPS) can provide location and an inter­
nal clock or synchronization system can provide the date and time, 
all potential predictors of language usage. Most mobile devices also 
include a configuration process in which the user is prompted for 
demographic information, such as age and gender. Many mobile de­
vices even have the ability to associate with preconfigured user ac­
counts, which may contain much more detailed information, such as 
the topography of the user’s social network, the user’s interests and 
hobbies, education, and career or job title. All of this information can 
be viewed as context that provides insight into that user’s potential 
language usage patterns. 

There has been extensive prior work on comparing language usage 
patterns across socio-economic backgrounds [23], as well as age and 
gender groups [98]. People who share similar personality traits have 
been found to share similar word usage patterns, particularly within 
social networks [135]. Prior work has also noted that a person’s vocab­
ulary is strongly correlated to location of use [84, 45]. There is even a 
National Institute of Standards and Technology (NIST) Text REtrieval 
Conference (TREC) Contextual Suggestion Track, first offered in 2012, 
in which search terms are augmented with contextual information, in­
cluding location and season [19]. The current work extends this line 
of inquiry to understand the relative contribution of each contextual 
cue, using raw feature counts and vocabulary distributions, across 
two different corpora to determine the most reliable predictors of lan­
guage usage. The resultant list of prioritized contextual cues could be 
applied to enhance vocabulary prediction or disambiguation in assis­
tive communication systems or other pervasive speech and language 
technology. 

3.3 approach 

We examined several contextual categories that can be derived from 
current mobile devices during initialization or via sensor technology, 
such as known attributes of the author and the current location. We 
further divided these categories into seven contextual language pre­
dictors for a given utterance or writing sample: the author’s age, gen­
der, city, state (geographical), as well as the calendar month, day of 
the month, and day of the week. In addition to examining the contri­
bution of each predictor independently, all available combinations of 
predictors were also compared. In this chapter, the term “predictors” 
is used interchangeably with “contextual categories” or “contextual 
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cues,” and the “context” of a message or utterance is the set of values 
for each predictor when the message or utterance was constructed. 

Predictive power was estimated by comparing word-level unigram 
distributions, as provided by predictor combinations, to actual distri­
butions of spoken or written content. Word-level unigrams were used, 
rather than higher-level n-grams or skip-grams, to obtain low-level se­
mantic granularity and provide a foundation for future studies with 
more complex language models. More computationally intense ap­
proaches should only improve upon the performance of these uni­
gram baselines. 

3.4 corpora 

The lack of representative corpora in the field of assistive commu­
nication technology is well documented [109]. Additionally, existing 
corpora are often not tagged with contextual information. To support 
reproducible results, we chose to analyze two freely available corpora, 
primarily in English, that contain overlapping contextual information: 
the Blog Authorship corpus and the Yelp Academic Dataset. The Blog 
Authorship corpus is a collection of over 680,000 blog posts from the 
Blogger.com website [96]; the Yelp dataset contains over 330,000 nar­
rative reviews of 250 businesses in 16 different states [136]. 

Each corpus was processed to create a mapping between every 
word, converted to lowercase, with the contexts in which it was used 
and the number of times it was used in each context. Words were 
parsed using the Penn Treebank tokenizer from version 3.0 of the 
NLTK [13]. No stemming was performed in order to empirically dis­
cover language patterns that might have been hidden by conflated 
conjugations or unusual spellings. A minimal list of 34 stop words 
was used, consisting primarily of articles, prepositions, and corpus-
specific placeholders: 

a, about, an, and, are, as, at, be, by, com, for, from, how, http, 
in, is, it, of, on, or, that, the, this, to, urllink, was, what, when, 
where, who, why, will, with, www 

Common stop words such as “like” were not removed because 
there are well-understood language patterns that make extensive use 
of certain stop words, including “like” and “so” [132, 22]. Although 
the removal of stop words is common in information retrieval [129], 
it can sometimes be a confounding factor [24, 137]. In this study, stop 
words were removed primarily to reduce the burden of data storage 
and computational complexity, but it is important to note its potential 
effects. 

3.5 evaluation 

Because both corpora were collected under different usage scenarios, 
which could be viewed as higher-order contexts, each corpus was ana­
lyzed separately. For each corpus, a feature list was generated, consist­

http:Blogger.com
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Table 3: Summary of Processed Corpora 

Attribute Blog Authorship Yelp 

Authors 19,320 130,850 

Features 525,253 134,199 

Table 4: Unique, Non-Empty Predictor Values per Processed Corpus 

Predictor Blog Authorship Yelp 

Age 26 -

Gender 2 -

Day of the Week (DOW) 7 7 

Day of the Month (DOM) 31 31 

Month 12 12 

City - 119 

State - 16 

Note: A hyphen indicates that the predictor was not available in the corpus. 

ing of all vocabulary words used more than once in that corpus. Each 
corpus was randomly divided into 10 groups of authors and remain­
ing authors were discarded (Table 3). One fold (10%) was analyzed 
from each of the corpora: 1,932 authors from the Blog Authorship 
corpus and 13,085 authors from the Yelp corpus. For each analyzed 
author in each corpus, all non-empty combinations of all values for 
each available predictor were used as target distributions: age, gender, 
day of the week, day of the month, month, and city/state. To further 
lower computational complexity and account for intra-predictor sim­
ilarity, values for “day of the month” were combined into 4 groups 
(1 - 8, 9 - 16, 17 - 24, 25 - 31), roughly corresponding to “week of the 
month.” 

There was a theoretical upper limit of 26 × 2 × 7 × 4 × 12 × 119 = 
2, 079, 168 possible contexts for each author; however, because age 
and gender were generally constant for each author, and other predic­
tors often had only a few possible values for each author, the average 
number of unique contexts was approximately 18 per author in the 
Blog Authorship corpus and 4 per author in the Yelp dataset. 

For each context per author, the counts of each feature formed 
a vocabulary distribution within that context. This distribution was 
the target distribution. Predicted distributions were obtained for ev­
ery available combination of predictors in the corpus (Table 4). Thus, 
25 = 32 predictor combinations were compared in each corpus for 
an overall total comparison of 48 combinations. For every predictor 
combination, the predicted distribution was taken over all authors in 
the other 9 folds in the corpus: there was no intersection between 
training and test authorship. 
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Table 5: Example Combinations for a Hypothetical Target Distribution 

Predictors Description 

Age The vocabulary distribution of all 23-year-olds 
in the non-target 9 folds. 

Gender The vocabulary distribution of all females in 
the non-target 9 folds. 

Age + Gender The vocabulary distribution of all 23-year-old 
females in the non-target 9 folds. 

Gender + City 
The distribution, from the non-target 9 folds, of 
all words written in Seattle by female authors. 

DOM 
The distribution of words written between the 
25th and 31st days of the month, inclusive, by 
all authors in the non-target 9 folds. 

For example, suppose the Yelp corpus had contained a hypotheti­
cal author Alice, a 23-year-old female. One target distribution might 
have been the vocabulary used by Alice on Monday, July 25th, 2011, 
when Alice reviewed a restaurant in Seattle, Washington, USA. For 
this distribution, the context would have been: 

Age = 23 
Gender = Female 
DOW = Monday 
DOM = 25 - 31 
Month = July 
City = Seattle 
State = Washington 

Some example predictor combinations for the target distribution 
specified by this context are described in Table 5. The target distribu­
tion would have been compared to the distribution from every predic­
tor combination, and this process repeated for all of Alice’s possible 
target distributions. 

Each corresponding target vector A and predictor vector B, consist­
ing of raw feature counts, was additively smoothed (uniform plus-
one) and then normalized to create a corresponding target distribu­
tion P and predictor distribution Q. These feature vectors and distri­
butions were compared using the following metrics: 

kullback-leibler divergence A non-symmetric measurement 
of the bits of information lost when using distribution Q to approx­
imate “true” distribution P [52], Kullback-Leibler (KL) divergence 
measures the directed divergence between distributions under the 
assumption that each distribution sums to 1 and there is absolute 
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continuity (Q(i) = 0 ⇒ P(i) = 0). Both of these assumptions were 
fulfilled by the additive smoothing, giving: 

n   
P(i)

DKL(PIQ) = log P(i) (7)2 Q(i)
i=1 

KL divergence is well-suited to evaluating statistical language mod­
els: it is strongly related to perplexity and additively equivalent to 
cross-entropy [107]. 

cosine similarity Used extensively in information retrieval and 
recommender systems, cosine similarity is related to Pearson’s product-
moment correlation coefficient r, can be readily calculated, and has 
well-understood predictive properties [93, 103]. Cosine similarity treats 
each of the n features as an axis in high-dimensional positive space 
and measures the cosine of the angle θ between vectors A and B: 

n 
AiBi

i=1 cos(θ) = 
A ·B 

=   (8)
IAIIBI n n  

(Ai)2 (Bi)2 

i=1 i=1 

precision at 20 (prec@20) Commonly used in information re­
trieval [88], Prec@20 measures the percentage of relevant items re­
turned within a rank cut-off of 20. Precision is a useful measurement 
for prediction because, especially with written tasks, message com­
position is usually augmented by a small number of the most likely 
suggestions. In the current work, Prec@20 is calculated by assuming 
that the top 20 most likely words in A are relevant. Thus, for M and 
N as the sets of 20 most likely words from A and B, respectively: 

|M ∩N|
Prec@20 = (9)

20 

3.6 results 

Table 6 presents the results for predictor combinations in increasing 
order of mean KL divergence, with lower divergence indicating better 
performance (i.e. stronger similarity and higher prediction accuracy). 
Results for predictor combinations in decreasing order of mean cosine 
similarity and precision are presented in Table 7 and Table 8. In addi­
tion to relative rank position and SD, “Count” indicates the number 
of times the predictor was compared to a target distribution; varia­
tion among counts are related to the availability of contextual cues 
and non-empty predictor combinations in each corpus. All numbers 
shown are rounded to four decimal places. The empty predictor com­
bination, labeled as “No Context,” represents the global vocabulary 
distribution over the non-target folds and indicates that no contextual 
information was used. 
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Combinations of predictors that make use of both city and state 
(“City+State”) are not included in the results because cities are gener­
ally unique to a state. We exclude the possibility of similarly named 
cities having related influences, so in terms of information content, 
knowledge of the current state does not add further information if 
the current city has already been determined. 

The best performing predictor combination by KL divergence made 
use of the author’s location and all available information about the 
calendar date (“DOW+DOM+Month+City”). The second best com­
bination by KL divergence replaced location with the author’s age 
and gender and performed only slightly worse. The non-contextual 
predictor performed second-worst, surpassed in inaccuracy only by 
the Gender predictor. The ranking pattern displayed by the KL di­
vergence metric shows that, in general, using more contextual cues 
results in predictor distributions that more accurately reflect true dis­
tributions. For example, the predictor combination leveraging both 
calendar month and geographical state (“Month+State”) performed 
better than either predictor separately. 

Predictor rankings by cosine similarity and precision were highly 
correlated; however, because few stop words were removed, it is pos­
sible that the top 20 words in each feature vector contained other 
high-frequency grammatical terms. By cosine similarity, the best per­
forming predictor combination leveraged the author’s gender and the 
calendar date of message construction (“Gender+DOM+Month”). By 
precision, the best predictor combination used the author’s age and 
the calendar month (“Age+Month”). 

In general, predictor combinations that outperformed the non-contextual 
predictor by cosine similarity and precision leveraged demographic 
information about the author. Unlike the rankings by KL divergence, 
however, the predictor combination with demographics and calendar 
date (“Age+Gender+DOW+DOM+Month”) did not perform as well 
as either the Age or Gender predictors individually. The worst pre­
dictor combinations by cosine similarity were those that leveraged 
location information, such as City or State. Interestingly, the best pre­
dictor combination by KL divergence (“DOW+DOM+Month+City”) 
was the worst predictor combination by cosine similarity and preci­
sion. 

Overall, the non-contextual predictor, representing the global vo­
cabulary distribution across the non-target 9 folds for each corpus, 
had decidedly sub-par performance. It was 47th out of 48 by KL di­
vergence, 31st out of 48 by cosine similarity, and 27th out of 48 by 
precision (prec@20). 

3.7 discussion 

Differences between the rank orderings by KL divergence and cosine 
similarity were to be expected because of the different aims and be­
haviors of each metric. KL divergence measures information loss due 
to the use of an approximate probability distribution; cosine similar­
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Table 6: Best Predictor Combinations by KL Divergence 

Predictor Combination Count KL Divergence 
Rank Mean SD 

DOW+DOM+Month+City 48996 1 0.0331 0.0290 
Age+Gender+DOW+DOM+Month 34053 2 0.0457 0.0577 
Age+DOW+DOM+Month 34257 3 0.0913 0.1029 
DOW+DOM+Month+State 49644 4 0.1233 0.1039 
DOW+Month+City 49494 0.1382 0.1074 
Age+Gender+DOW+Month 34170 6 0.1575 0.1395 
DOM+Month+City 49588 7 0.2372 0.1726 
Age+Gender+DOW+DOM 34314 8 0.2680 0.1552 
Age+Gender+DOM+Month 34182 9 0.2791 0.2424 
Age+DOW+Month 34308 0.2944 0.2385 
DOW+DOM+City 49626 11 0.3786 0.2536 
DOW+Month+State 49708 12 0.4265 0.3163 
Gender+DOW+DOM+Month 34320 13 0.4824 0.3403 
Age+DOM+Month 34314 14 0.4913 0.3859 
Age+DOW+DOM 34314 0.4922 0.2536 
DOW+DOM+Month 84031 16 0.6021 0.2523 
DOM+Month+State 49712 17 0.6538 0.4518 
Month+City 49679 18 0.7323 0.4213 
Age+Gender+Month 34221 19 0.7710 0.5134 
Age+Gender+DOW 34314 0.8283 0.3644 
DOW+DOM+State 49710 21 0.9299 0.5874 
DOW+City 49695 22 1.0426 0.5337 
Gender+DOW+Month 34323 23 1.1803 0.5785 
Age+Gender+DOM 34314 24 1.1854 0.4863 
Age+Month 34317 1.1890 0.6959 
Age+DOW 34314 26 1.3016 0.5014 
DOM+City 49702 27 1.4370 0.6483 
Month+State 49714 28 1.4888 0.7904 
DOW+Month 84037 29 1.4956 0.3500 
Gender+DOM+Month 34323 1.6390 0.7516 
Age+DOM 34314 31 1.7436 0.6139 
Gender+DOW+DOM 34320 32 1.7510 0.2473 
DOW+State 49711 33 1.8972 0.8795 
DOM+Month 84038 34 1.9852 0.4095 
DOM+State 49713 2.3530 0.9293 
Age+Gender 34314 36 2.3682 0.7049 
DOW+DOM 84036 37 2.4074 0.1546 
City 49714 38 2.5801 0.8278 
Gender+Month 34323 39 2.8122 0.8261 
Age 34317 3.0170 0.7381 
Gender+DOW 34323 41 3.0752 0.1621 
Month 84040 42 3.1959 0.3626 
State 49714 43 3.4373 0.8353 
Gender+DOM 34323 44 3.5635 0.1806 
DOW 84037 3.5817 0.0926 
DOM 84039 46 3.9456 0.0975 
(No Context) 84040 47 4.4164 0.0814 
Gender 34323 48 4.4743 0.0952 
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Table 7: Best Predictor Combinations by Cosine Similarity 

Predictor Combination Count Cosine Similarity 
Rank Mean SD 

Gender+DOM+Month 34323 1 0.5623 0.2220 
Gender+Month 34323 2 0.5620 0.2218 
Age+Month 34317 3 0.5615 0.2225 
Age+Gender 34314 4 0.5614 0.2226 
Gender+DOW+Month 34323 0.5614 0.2216 
Age 34317 6 0.5612 0.2236 
Age+DOM 34314 7 0.5608 0.2231 
Gender+DOW+DOM+Month 34320 8 0.5607 0.2217 
Gender+DOM 34323 9 0.5607 0.2222 
Gender+DOW 34323 0.5606 0.2227 
Gender 34323 11 0.5606 0.2227 
Age+Gender+DOM 34314 12 0.5605 0.2220 
Gender+DOW+DOM 34320 13 0.5605 0.2220 
Age+DOW 34314 14 0.5604 0.2235 
Age+Gender+DOW 34314 0.5600 0.2224 
Age+DOM+Month 34314 16 0.5597 0.2225 
Age+Gender+Month 34221 17 0.5595 0.2214 
Age+DOW+DOM 34314 18 0.5586 0.2226 
Age+DOW+Month 34308 19 0.5575 0.2217 
Age+Gender+DOW+DOM 34314 0.5564 0.2216 
Age+Gender+DOM+Month 34182 21 0.5562 0.2213 
Age+Gender+DOW+Month 34170 22 0.5523 0.2207 
Age+DOW+DOM+Month 34257 23 0.5490 0.2214 
Age+Gender+DOW+DOM+Month 34053 24 0.5375 0.2213 
DOM+Month 84038 0.4754 0.1927 
Month 84040 26 0.4754 0.1927 
DOW+Month 84037 27 0.4753 0.1926 
DOW 84037 28 0.4752 0.1927 
DOW+DOM 84036 29 0.4752 0.1926 
DOM 84039 0.4752 0.1926 
(No Context) 84040 31 0.4751 0.1927 
DOW+DOM+Month 84031 32 0.4747 0.1924 
City 49714 33 0.4576 0.1788 
DOM+City 49702 34 0.4569 0.1787 
State 49714 0.4565 0.1792 
DOM+State 49713 36 0.4564 0.1792 
DOW+City 49695 37 0.4564 0.1787 
DOW+State 49711 38 0.4563 0.1791 
Month+State 49714 39 0.4561 0.1791 
Month+City 49679 0.4555 0.1786 
DOW+DOM+State 49710 41 0.4554 0.1788 
DOM+Month+State 49712 42 0.4544 0.1786 
DOW+DOM+City 49626 43 0.4533 0.1783 
DOW+Month+State 49708 44 0.4530 0.1781 
DOM+Month+City 49588 0.4506 0.1781 
DOW+Month+City 49494 46 0.4469 0.1775 
DOW+DOM+Month+State 49644 47 0.4433 0.1758 
DOW+DOM+Month+City 48996 48 0.4267 0.1748 
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Table 8: Best Predictor Combinations by Precision 

Predictor Combination Count Precision @ 20 
Rank Mean SD 

Age+Month 34317 1 0.3285 0.1635 
Gender+DOM+Month 34323 2 0.3279 0.1640 
Gender+DOW+DOM+Month 34320 3 0.3278 0.1634 
Gender+Month 34323 4 0.3277 0.1642 
Gender+DOW+Month 34323 0.3274 0.1639 
Age+Gender+Month 34221 6 0.3274 0.1630 
Age+DOM+Month 34314 7 0.3272 0.1629 
Age+DOM 34314 8 0.3269 0.1623 
Age+Gender 34314 9 0.3268 0.1630 
Age+Gender+DOM 34314 0.3267 0.1624 
Age 34317 11 0.3265 0.1616 
Age+DOW 34314 12 0.3264 0.1626 
Gender 34323 13 0.3263 0.1623 
Age+DOW+Month 34308 14 0.3260 0.1625 
Gender+DOW+DOM 34320 0.3259 0.1624 
Gender+DOM 34323 16 0.3259 0.1626 
Gender+DOW 34323 17 0.3258 0.1630 
Age+DOW+DOM 34314 18 0.3256 0.1618 
Age+Gender+DOM+Month 34182 19 0.3254 0.1619 
Age+Gender+DOW 34314 0.3253 0.1621 
Age+Gender+DOW+DOM 34314 21 0.3248 0.1613 
Age+Gender+DOW+Month 34170 22 0.3233 0.1614 
Age+DOW+DOM+Month 34257 23 0.3207 0.1613 
Age+Gender+DOW+DOM+Month 34053 24 0.3135 0.1595 
Month 84040 0.2757 0.1337 
DOM+Month 84038 26 0.2757 0.1338 
(No Context) 84040 27 0.2756 0.1334 
DOM 84039 28 0.2753 0.1331 
DOW+Month 84037 29 0.2748 0.1339 
DOW+DOM 84036 0.2746 0.1332 
DOW 84037 31 0.2745 0.1331 
DOW+DOM+Month 84031 32 0.2744 0.1339 
State 49714 33 0.2636 0.1235 
DOM+State 49713 34 0.2633 0.1235 
City 49714 0.2632 0.1238 
Month+State 49714 36 0.2632 0.1232 
DOM+City 49702 37 0.2626 0.1236 
DOW+State 49711 38 0.2624 0.1231 
DOW+City 49695 39 0.2624 0.1235 
Month+City 49679 0.2619 0.1233 
DOW+DOM+State 49710 41 0.2618 0.1228 
DOM+Month+State 49712 42 0.2614 0.1227 
DOW+Month+State 49708 43 0.2605 0.1223 
DOW+DOM+City 49626 44 0.2603 0.1229 
DOM+Month+City 49588 0.2588 0.1227 
DOW+Month+City 49494 46 0.2563 0.1218 
DOW+DOM+Month+State 49644 47 0.2546 0.1207 
DOW+DOM+Month+City 48996 48 0.2457 0.1200 
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ity measures congruency of subject matter through the angular orien­
tation of term vectors. KL divergence has the effect of penalizing pre­
dictor distributions that have many differences among low-frequency 
terms. Cosine similarity, however, has the opposite characteristic: vec­
tors with strong similarity along a few axes can score more highly 
than vectors with lower similarity across more axes, sometimes due 
to sparsity and called “chance correlation” [95, 32]. 

Our results show that the effectiveness of many predictor com­
binations depends on the metric used; however, it is interesting to 
note that there are some predictor combinations that retain their ac­
curacy. In particular, combining demographic information about the 
author with calendar information resulted in predictor combinations 
that were both strongly representative of the true distributions (i.e. 
low KL divergence) and good predictors by cosine similarity. For ex­
ample, the combinations of “Age+Month,” “Gender+DOM+Month,” 
and “Age+Gender+DOM” maintained higher rank positions than the 
non-contextual predictor across all three metrics. 

If term frequencies are assumed to follow Zipfian distributions, 
then there is strong similarity in the distribution of high-frequency 
words among authors of the same age or gender (i.e. high cosine 
similarity), but this similarity seems to diminish in the long tail (i.e. 
high KL divergence). This behavior means that adding more context 
may not always be beneficial, depending on the task. While adding 
more contextual cues generally seems to bring the predictor distribu­
tion closer to the true distribution, it may introduce noise that can 
confuse some common measurement techniques, such as cosine simi­
larity. This situation is intrinsically similar to the statistical challenges 
associated with machine learning in high dimensionality [101, 25]. As 
dimensionality increases, classification often becomes more difficult 
due to diverging spectra and relative sample size. Dimension reduc­
tion and feature selection become vital to decrease misclassification 
errors. 

The generally poor performance of the non-contextual predictor 
would seem to suggest that global distributions, such as might be ob­
tained from Google’s N-Gram corpus, may not always be appropriate 
as background probabilities, especially in scenarios where the compo­
sition of lower frequency terms is important. This chapter did not ex­
amine the probability distributions of bigrams or trigrams, however, 
so there may be a stronger relationship between the global distribu­
tions of higher-level n-grams or skip-grams. 

Location-based predictors, such as city and state, and date met­
rics, such as day of the week or day of the month, appeared to pro­
vide more realistic probability distributions by KL divergence. While 
global vocabulary distributions may be sub-par, this result suggests 
that using word probabilities from a significantly different location, 
such as from the Wall Street Journal [86] or New York Times if the 
author is not from New York, may be counter-productive. Instead, 
it could be more appropriate to use distributions from a publishing 
source more geographically related to the author, such as a local news­
paper, and perhaps even sub-divide the vocabulary into distributions 
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for each month or day of the week. From a socio-linguistic perspec­
tive, city and state-wide word distributions would be strongly related 
because of shared regional characteristics, including local events, sports 
teams, political candidates, companies, weather, and geographical 
landmarks. These results also suggest that, given an author’s lan­
guage sample, it might be possible to examine the vocabulary dis­
tribution’s low-frequency words to obtain a “signature” and discern 
where and when the author created the content. 

A confounding factor in the Yelp corpus is the fact that there is 
a higher order context: Yelp reviews are primarily about businesses, 
which may change infrequently. So, it is possible that the low KL di­
vergence of the location-based predictors is due to the natural group­
ings of different types of businesses in different cities or states, and 
thus different language necessary to describe them. For example, if 
there are a lot of Italian restaurants in a particular city, it is likely that 
descriptions may differ from a city in which there are many Mexican 
restaurants. This would seem to be confirmed by the TREC contex­
tual challenge: in 2012, multiple contextual categories were provided, 
but the 2013 competition only provided location and search terms 
[21], perhaps indicating that location was one of the more dominant 
predictors. 

We attempted to be pragmatic in our analysis of the corpora; how­
ever, it is possible that we may have discovered stronger similarities 
if we had implemented stemming and stop words. The lack of stem­
ming and minimal usage of stop word removal resulted in discover­
ing several word tokens that we were not originally aware of, such as 
various types of “smiley faces” (e.g. ^_^). Our data also confirmed the 
lack of punctuation as discovered by related work [104, 62]; instead, 
we saw extensive use of ellipses or no punctuation at all. 

The results of this study should be considered within the context of 
the corpora examined. In particular, the two corpora examined in the 
study were diverse: the Blog Authorship and Yelp corpora were writ­
ten for conceptually different audiences and for unspecified reasons. 
It is a well-understood phenomenon that people speak and write dif­
ferently for different audiences and purposes [6], so even if there had 
been shared authors within these corpora, it is possible that their 
vocabulary distributions would have been different in each context. 
Values within “day of the month” were also artificially conflated into 
contiguous groups; it is possible that values within these categories 
are related across boundaries or in different ways that were not ex­
plored. 

Additionally, not all of the contextual categories were provided by 
both corpora. Author demographics were only provided by the Blog 
Authorship corpus and location was only provided by the Yelp cor­
pus. It might have been possible to infer gender from the names of 
the authors [17, 77], but that would have introduced more potential 
confounds and still not allowed for age comparisons. The locations 
available from the Yelp dataset also only describe the businesses that 
were reviewed, not the locations or origins of the reviewers. It is pos­
sible that people are more likely to write reviews for businesses close 
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to where they live or frequently travel, and thus it could be assumed 
that authors have some relationship with the locations, but that the­
ory could not be definitively established by the data provided. 

There are higher level contexts that we did not explore, such as 
might be discovered by techniques like Latent Dirichlet Allocation 
(LDA), and some of the corpora provided further contextual informa­
tion that we did not make use of in this study. The Blog Authorship 
corpus, for example, provides self-stated “career.” It is possible that 
people in the same career share much of the same vocabulary, par­
ticularly on weekdays and during normal work hours. In combina­
tion with date and time-related predictors, this contextual category 
might have performed very well, however that possibility was not ex­
plored in this chapter. Additionally, authors in the Yelp corpus were 
tagged with a hyperlink leading to an “author information” page, 
from which further information about the author could potentially 
be found via data scraping and parsing of the website. 

We chose to use freely available corpora to encourage reproduction 
and analysis of this work; however, it would be good to confirm our 
results with full ten-fold analysis or by running a similar study on 
larger corpora with more uniform contextual tagging. Although it is 
difficult to obtain and distribute such data due to licensing restric­
tions and privacy concerns, social networks like Twitter, Facebook, or 
Google+ could provide further evidence of the relative usefulness of 
different contextual language predictors. 

3.8 summary 

This chapter focused on the relative contributions of various contex­
tual cues for predicting language usage. We compared global and 
contextual language distributions against true distributions to learn 
which combinations of contextual categories provided the closest ap­
proximations and most accurate predictions. The major findings are 
summarized as follows: 

1. The non-contextual predictor, representing a global language 
distribution, was not among the best performing predictors by 
any of the three metrics. 

2. For tasks that benefit from highly accurate probability distribu­
tions, such as speaker identification and other “fingerprinting” 
type tasks, our results suggest that training data should be cat­
egorized according to calendar date and further subdivided, if 
possible, based on author demographics (e.g. age and gender) 
or geographical region (e.g. city and state). 

3. For tasks aimed at classification, clustering, and disambigua­
tion, our results suggest that it is still beneficial to leverage cal­
endar date and author demographics; however, variability in re­
gional language patterns may reduce the efficacy of some stan­
dard similarity metrics. 
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In general, the inclusion of more context improved the similarity 
between predictor distributions and true distributions. Even informa­
tion as categorically broad as the city, state, or day of the week was 
enough to significantly increase accuracy. It remains unclear whether 
more granular levels of location, such as might be provided by higher 
resolution GPS, would result in further improvements or diminishing 
returns. Although neither of the corpora in the current study allowed 
for combinations of age, gender, and city, it would also be worth ex­
amining whether more accuracy could be gained by combining au­
thor demographics with location. 

The results of the present study have implications for speech recog­
nition systems and assistive communication devices that benefit from 
language prediction to reduce fatigue and improve the efficiency of 
message formulation. This chapter provides a prioritized list of con­
textual predictors to help in addressing the cold-start problem and 
provide reasonable performance while user-specific data is gathered. 
Our results suggest that usage patterns based on author attributes 
and calendar information are highly informative and should be pre­
ferred over many other sources. Regional vocabulary patterns can 
also be more informative than global statistics, but should be consid­
ered carefully based on the specific task. Given that many newer sys­
tems are deployed on mobile platforms, it may be beneficial to lever­
age embedded sensor information relating to location and the individ­
ual’s monthly or weekly schedule. These findings point to the impor­
tance of gathering an individual’s date-specific and location-specific 
vocabulary distributions using continuous data collection and active 
learning, especially for pervasive assistive technology. 
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4
P E R S O N A L I Z E D I N T E R A C T I O N 

4.1 overview 

Although an increasing number of new AAC systems are being de­
signed for use with touchscreen technologies, such as Android or 
iOS tablets, many AAC users have concomitant upper limb motor 
impairments (e.g. tremors, spasms, or reduced mobility) that make 
using standard touchscreen technology difficult and frustrating. The 
work in this chapter explores alternative approaches to the standard 
“lift-move-touch” interaction sequence on current touchscreens. To 
help improve the accessibility of touchscreen technologies, we stud­
ied the movement patterns of 15 individuals with progressive neu­
rological disorders and upper limb motor impairments. This chapter 
presents the quantitative results of our study, observations of func­
tional compensation patterns, and the personal feedback from study 
participants. The results of this work are an evidence-based roadmap 
towards more personalized and adaptive touchscreen interfaces for 
current and potential AAC users. 

4.2 motivation 

Touchscreen technologies have rapidly increased in sensitivity and 
availability over the last decade. Most modern mobile devices are 
touchscreen systems that support multiple simultaneous touches and 
gestural interactions. The accessibility of these devices, however, has 
not kept pace with the general technological improvements. Acces­
sibility features for people with upper limb motor impairments, in 
particular, are often limited to switch control, stored gestures, and 
adjustment of click timing. Users are often programmatically prohib­
ited from toggling or adjusting sliding functionality. Users are also 
prevented from modifying the location, size, shape, and orientation 
of many buttons and toolbars. 

It is difficult to quantify the touchscreen usage patterns, needs, and 
behavioral compensation of people with upper limb motor impair­
ments because of the diversity of the population and available de­
vices; however, there is a growing body of research in this area. Button 
sizes and spacing effects in layout-specific selection tasks have been 
compared between users with and without motor impairments [18], 
and researchers have obtained basic usage patterns through surveys 
[44] or by watching online videos [3]. Related work has demonstrated 
the potential advantages of swabbing (i.e. sliding) as a selection tech­
nique [117] and explored the effects of form factor on pointing tasks 
[28]. No study to date, however, has examined the combined effects of 
handedness and motor impairment on full-screen touch interactions. 
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Table 9: Attributes of Participants in Motor Movement Study 

Gender Handedness Stylus or Finger Speech Impairment Motor Impairment 

M Left Finger Mild Moderate 

F Right Finger Mild Mild 

F Right Stylus Mild Mild 

F Left Stylus Mild Moderate 

F MS-Left Finger Mild Moderate 

F Right Finger Moderate Moderate 

F Right Finger Moderate Moderate 

F MS-Left Stylus Mild Mild 

F Left Stylus Mild Mild 

M Right Finger Severe Severe 

M Right Finger Non-Speaking Severe 

F MS-Left Finger Moderate Mild 

M Right Stylus Mild Mild 

F Left Stylus Mild Moderate 

M Right Finger Non-Speaking Severe 

In this chapter, we present the results of a controlled study compar­
ing the touch behavior of left-handed and right-handed subjects with 
upper limb motor impairments as they performed full-screen tapping 
and sliding tasks. 

4.3 approach 

We conducted a motor skills assessment study in which participants 
were asked to play a touchscreen game, called “MoGUI” (Motor Op­
timization GUI), that involved popping animated balloons by touch­
ing them. We recruited 15 adults (10 females and 5 males) from The 
Boston Home, a residential facility for people with progressive neuro­
logical diseases, especially MS, MSA, and muscular dystrophy (MD). 
All participants used wheelchairs and had some level of speech and 
motor impairment (Table 9). Participants were screened by a speech-
language pathologist (SLP) to verify that they were current or po­
tential AAC users, but had adequate hearing, vision, and cognitive 
abilities to fully consent and complete the tasks. The SLP also cat­
egorized their impairments and verified that all participants could 
interact with a touchscreen computer using their fingers, hands, or 
a stylus. They had a combined average age of 56 years, with a min­
imum of 35 and a maximum of 71. Seven of the participants were 
left-handed: four naturally and three due to MS. The remaining par­
ticipants were right-handed. 

The tablet computer used in the study was an Asus Transformer 
TF101 with a 10.1-inch diagonal display size at 1280x764 pixel reso­
lution, running Android 4.4.2 with default settings. All participants 
were familiar with touchscreen tablets, but only 8 of them used one 
on a regular basis. Of these 8 participants, 7 used iPads and 1 used 
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Figure 2: Screenshots of MoGUI 

a Kindle. Although 6 of the participants indicated that they wanted 
to use a stylus, 4 of these participants had difficulties opening their 
fingers and requested that the stylus be placed in their hands. For 
these participants, the stylus served to separate their hand from the 
screen to prevent accidental touches from the non-pointing portions 
of their hands, such as their palms or knuckles. 

When prompted for the most comfortable position to place the 
tablet, such that they could physically touch all areas of the screen, 9 
users requested that the tablet be placed on a table in front of them 
at approximately a 45-degree angle. One participant asked for the 
tablet to be placed flat on the table. Two participants regularly used 
their tablets with wheelchair desk-mounts and requested that the 
study tablet be positioned in the same way. Two other participants 
requested that the tablet be placed in their laps; one of these partici­
pants requested that the tablet lie flat and the other requested that it 
be propped towards him with a rolled up towel. The last participant 
held the tablet against her body with one arm and used her other 
arm for interaction. 

Each participant provided data during two sessions, separated by 
at least one full day of rest. Each session was approximately 30 - 45 
minutes long and consisted of 10 levels, with 3 rounds per level. Dur­
ing each round, a series of balloon-shaped targets were displayed, la­
beled with consecutive numbers (Figure 2). One balloon was shown 
for each round during level one, two balloons were shown for each 
round during level two, three balloons during level three, etc. Thus, 
each session required a participant to touch 165 targets. Users were 
asked to touch each target balloon in ascending numerical order. Tar­
get balloons were 256x256 pixels in size and were randomly gener­
ated in one of 16 locations on the screen using a 4x4 grid. As soon 
as a balloon target was touched, it popped and disappeared from the 
screen; balloons touched out of order did not pop. 
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Figure 3: Example Interaction Heatmap Generated by MoGUI 

In one of the two order-balanced sessions, participants were asked 
to use discrete movements (i.e. tapping or pointing) and avoid touch­
ing the screen except to hit a target. In the other session, participants 
were asked to use continuous motion (i.e. sliding or goal-crossing) 
and avoid disconnecting from the screen as much as possible. Users 
were offered a stylus, but were also allowed to use their fingers. Users 
were encouraged to hit all targets as quickly as possible, but also to 
rest whenever necessary. 

All interactions with the touchscreen were recorded by the sys­
tem, including the on_touch_down, on_touch_up, and on_touch_move 

events. After both sessions were completed, study participants were 
asked the following questions: 

1. Did you find any areas of the screen easier or more difficult to 
reach than others? 

2. Did you prefer tapping, sliding, a combination of both, or nei­
ther? 

3. Were the balloon targets too big or too small? 

4. What would you like to see improved in touchscreen tablets? 

For the severely dysarthric and non-speaking participants, the ques­
tions were rephrased as multiple “yes or no” questions and combined 
with pointing: 

1. Was this area of the screen easy for you to reach? 

2. Was this area of the screen difficult for you to reach? 

3. Did you like tapping? 

4. Did you like sliding? 

5. Were the balloons too big? 
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(a) Multiple Taps (b) Fingers Dragging 

(c) Hand Resting (d) Thumb Usage 

Figure 4: Example Variability of Non-Target Tapping 

6. Were the balloons too small? 

7. Would you like to use a touchscreen tablet in the future? 

8. Would touchscreen tablets need to be changed before you could 
use them? 

Study participants were also shown the resulting “heat maps” gen­
erated by MoGUI (Figure 3), depicting their touch interactions with 
the screen during each session. 

4.4 results 

We observed high variability in motor profiles between participants, 
especially with regard to which locations on the screen had the high­
est accuracy or fewest misses (Figure 4) and which areas were fastest 
or easiest to reach (Figure 6). There were also significant differences 
between left-handed and right-handed participants; however, it is im­
portant to remember that 3 of the 7 left-handed participants were 
right-handed prior to the onset of MS. For left-handed participants, 
there were numerous accidental touches, often from other fingers or 
knuckles, on both the bottom and left sides of the screen (Figure 5); 
for right-handed participants, these accidental touches occurred on 
the bottom and right sides of the screen. The average speed-to-target 
of left-handed participants was 365 pixels per second compared to 
429 pixels per second for right-handed participants. For each handed­
ness, there were significant time delays when reaching for targets on 
the far side of the screen: there was approximately a one second dif­
ference, on average, between touching targets on the nearest versus 
the farthest side of the screen. 

There were also significant differences in the average directional 
speeds for each handedness: for left-handed users, moving down and 
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(a) Left-Handed Users (b) Right-Handed Users 

Figure 5: Non-Target Touches by Handedness 

to the left was approximately 1.5 times faster than moving up and to 
the right (Figure 7); for right-handed users, moving down and to the 
right was almost 4 times faster than moving up and to the left. In 
general, participants were much faster while returning their hands 
and arms to a natural resting position than moving away from that 
resting position. 

There were speed differences between discrete movements and con­
tinuous motion in this study, regardless of participant handedness; 
however, they were not significant. The average speed-to-target of 
all participants while sliding was 407 pixels per second compared to 
392 pixels per second while tapping. It is important to note, however, 
that we saw numerous accidental slides during designated tapping 
sessions, and vice versa. During designated tapping sessions, the av­
erage participant tapped 84% of the targets and slid into 16% of the 
targets; during designed sliding sessions, the average participant slid 
into 57% of the targets and tapped the remaining 43%. This behav­
ior appeared to be caused by physical issues rather than confusion: 
we observed problems with friction, finger humidity, tremors, and 
spasms. 

4.5 feedback and observations 

At the end of the study, 3 participants said that they preferred tap­
ping the screen, 5 participants preferring sliding over the screen, 5 
participants preferred a combination of both input methods, and the 
remaining 2 participants had no preference. Ten participants men­
tioned that sliding required planning out a path ahead of time and 
required lifting your hand or arm to see the screen. Out of all the par­
ticipants, 8 pointed out that sliding felt “faster” and “easier,” but only 
for short distances. Over longer distances, participants said that there 
problems with skin friction and difficulties with stylus pressure. Ad­
ditionally, this study involved arbitrary targets in random locations, 
which is fundamentally different than a user interface that is primar­
ily static and can be learned over time. 

One participant alternated hands numerous times during the ex­
periment and explained that interacting with a touchscreen required 
him to use his shoulder muscles, which fatigued rapidly. Another par­
ticipant rested frequently (approximately 1 of every 5 minutes), but 
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(a) Left-Handed Users (b) Right-Handed Users 

Figure 6: Mean Speeds-to-Target by Handedness (Pixels/Second) 

explained that it was because of his eyes, not due to upper limb fa­
tigue. For this individual, focusing his vision to read numbers and 
moving his eyes to search for items on the screen was extremely tir­
ing. 

Certain areas of the screen were especially susceptible to acciden­
tal touches. In particular, the Android Action Bar, statically bound to 
the bottom of the screen, caused significant issues for 8 participants 
and resulted in repeated triggering of Google Now or window man­
agement functionality. Rather than starting their finger or stylus at 
the physical margin of the tablet and moving upwards, as they at­
tempted to do naturally, participants were forced to try to control 
their arms enough to touch the middle of the screen and move down­
wards. Although there were similar problems when participants tried 
interacting with the top of the screen, these problems were observed 
less frequently. 

We observed a number of unusual hand positions. One participant 
was a former athlete; because of his larger physical size and muscu­
lature, tremors and spasms were especially severe in his upper limbs. 
For this participant, the tablet was placed on a table immediately in 
front of him, tilted at a 45-degree angle. The participant rested his en­
tire hand on top of the tablet, and used his thumb to touch the screen; 
this interaction method made it very difficult to the participant to 
touch items at the bottom edge and lower corners of the screen. To 
reach these items, the participant needed to push the tablet farther 
away and rest his hand on the table, then try to raise his fingers up­
wards. This movement often resulted in hitting the Android Action 
Bar instead of the targets, activating Google Now functionality or 
switching between available windows. 

Another participant requested that the tablet be placed in her lap, 
but not propped up and tilted towards her. Instead, the tablet rested 
on her thighs and occasionally shifted in angle to tilt slightly away 
from her, triggering the auto-rotate functionality and flipping the 
screen upside-down. This participant indicated that the position was 
how she normally interacted with her iPad, so auto-rotate was dis­
abled in order to support her preferences. 

Anecdotally, two participants mentioned that they would appreci­
ate more confirmation dialogs on their tablets. Due to tremors and 
spasms, they said that they often activate a feature or perform an ac­
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(a) Left-Handed Users (b) Right-Handed Users 

Figure 7: Mean Directional Speeds by Handedness (Pixels/Second) 

tion by accident. They acknowledged that non-disabled users would 
probably find such repeated confirmation dialogs very annoying, but 
they would be valuable for users with motor impairments. 

One of the non-speaking participants used a letter-based AAC sys­
tem that primarily consisted of a QWERTY keyboard with word pre­
diction. During the consent process with this participant, we made 
several observations about how he used his system. Because of se­
vere motor impairments, this participant often made multiple acci­
dental taps on each letter. He also missed the screen occasionally, 
perhaps due to vision impairments, when attempting to touch a but­
ton, resulting in omitted characters. This individual also rarely used 
the space bar to separate words, perhaps to increase communication 
speed, and never used the TTS functionality. Instead, conversation 
partners looked over his shoulder at the tablet screen and watched 
for confirmation while trying to guess his intended utterances. 

4.6 summary 

Current accessibility techniques group users with motor impairments 
together and assume uniform interaction over the entire touch sur­
face. It is understood that users with motor impairments have differ­
ent touchscreen behavior than non-disabled users; however, there is 
further diversity within the population of users with motor impair­
ments. Our results show that functional compensation and attributes 
such as handedness have significant effects within this population. 

For right-handed users, both the upper left and lower right corners 
of the screen required significantly more time and effort to reach; for 
left-handed users, this difficulty was associated with the upper right 
and lower left corners of the screen. Additionally, all study partici­
pants had significant amounts of unintentional interaction near the 
edges of the screen closest to their primary hand: for right-handed 
users, this was the right and bottom edges of the screen; for left-
handed users, this was the left and bottom edges of the screen. Un­
fortunately, current touchscreen interfaces have essential system func­
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tionality located in almost all of these areas, especially the top and 
bottom edges of the screen. Because these system functions are often 
activated by sliding gestures, our results show that they are easily 
triggered by users with motor impairments. 

Simply shifting the positioning of the tablet relative to the user 
is probably insufficient: users would be unable to reach all parts of 
the screen. Although some of our results could suggest that the study 
tablet was too large, users may benefit from a “safety margin” around 
their particular device, or on configurable sides, to mitigate accidental 
touches. System functionality should also be customizable in style 
and location: statically binding behavior to the top or bottom of the 
screen can be problematic for many users. 

There appeared to be an optimal movement area for each user, 
strongly correlated to both handedness and tablet positioning. For 
most users, the shape of this area was an arc, approximately 3 - 4 
inches wide, that could be found by fixating the user’s elbow and 
rotating his or her hand across the screen. We observed reduced per­
formance when attempting to hit targets outside of this arc, possibly 
because our study participants all used wheelchairs and positioned 
their elbows on the arm rests. Hitting targets outside of these areas 
required users to depart from a comfortable, homeostatic position in 
order to lift their elbows off of the chair. 

There may be tangible advantages to departing from grid-based 
button positions and statically located system functionality, especially 
for users with upper-limb motor impairments. For optimal perfor­
mance, or even acceptable performance in many cases, touchscreen 
interfaces may benefit by allowing users to relocate buttons away 
from the screen edges and closer to optimal touch areas. Users should 
also be allowed to toggle or relocate sliding and swiping gestures, 
especially for essential system functionality. Finally, the results of 
our study suggest that sliding to arbitrary targets is not significantly 
faster than tapping; however, users with motor impairments may ben­
efit from systems that are able to combine the benefits of both move­
ment styles, especially given that many users encounter difficulties 
when restricted to only one interaction technique. 



[ December 14, 2014 at 13:12 – classicthesis ]



[ December 14, 2014 at 13:12 – classicthesis ]

Part II 

A P P L I C AT I O N 

Summary of interface designs and prototypes: 

1. RSVP-iconCHAT, a semantic approach to icon-based 
message construction that requires only a single in­
put signal. 

2. SymbolPath, an icon-based AAC system that supports 
continuous motion input and unordered superset se­
lection. 

3. DigitCHAT, a low-footprint, letter-based AAC sys­
tem that supports utterance generation at conversa­
tional speeds. 
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5
R S V P - I C O N C H AT 

5.1 overview 

Many individuals with especially severe mobility and language con­
straints require icon-based AAC systems controlled by switches. Single-
switch AAC systems are typically simplifications of multi-array AAC 
systems that share elements of the same interface layout, but sup­
port some form of scanning, such as linear or row-column. From a 
development standpoint, this conversion technique makes it easy to 
transform almost any AAC system into a single-switch system; how­
ever, it means that most of these systems were originally designed 
for users with much greater mobility. The purpose of this work was 
to design an icon-based AAC interface specifically for use with bi­
nary signals, such as switches. A usability study was conducted with 
both non-disabled adults as well as adults with speech and mobil­
ity impairments to determine performance bounds and observe indi­
vidual use cases. Results indicated similar learning curves for both 
groups and promising performance characteristics for the target pop­
ulation. These results have immediate applications to the design of 
icon-based AAC and implications for mobile, icon-mediated commu­
nication platforms. 

5.2 motivation 

Depending upon their mobility impairments and language constraints, 
many AAC users require icon-based systems controlled by switches 
[134]. Current single-switch AAC systems are typically simplifica­
tions of multi-array AAC systems and display a complex array of vo­
cabulary on the screen, organized into a navigation hierarchy based 
on categories. To increase the size of the vocabulary on these sys­
tems, the screen size must be increased, the button sizes must de­
crease, or the navigation hierarchy must become more complex. Each 
of these approaches has its limitations. An increased screen size re­
duces mobility of the system, smaller buttons are more difficult to 
view, and complicated navigation hierarchies require more time and 
effort to find the target button and increase the likelihood of con­
fusing the user. Additionally, when these interfaces are used with 
scanning, users must visually locate their target button from among 
the many options on the screen. People who use single-switch AAC 
systems often have extremely limited physical mobility or control, 
making it difficult to repeatedly perform the necessary head, neck, or 
eye movements when attempting to locate target items [78]. 



[ December 14, 2014 at 13:12 – classicthesis ]

46 rsvp-iconchat 

Figure 8: Functional Elements of the RSVP-iconCHAT Interface 

5.3 approach 

Our single-switch AAC interface, called RSVP-iconCHAT, aims to 
minimize the amount of head, neck, and eye movements required 
to efficiently control the system. RSVP-iconCHAT was designed to 
be robust enough to function with a brain-computer interface (BCI), 
as well as conventional access methods, such as sip-and-puff devices, 
eye-blink detectors, surface electromyography (EMG), or physical switches. 
To that end, we leverage a technique called rapid serial visual presen­
tation (RSVP), in which the user fixates on a relatively stable location 
while different images are displayed in that location, one at a time. 
RSVP originates from the field of psychology and has been used suc­
cessfully to control letter-based AAC systems [83]. 

To leverage RSVP, our interface focuses the user’s attention on the 
message being constructed instead of displaying all of the available 
vocabulary. To demarcate different visual fixation areas, messages are 
represented as semantic frames. Semantic frames are a product of 
case grammar theory, which asserts that the main action, or verb, 
is the central component of a message [27]. Each message can be 
expressed as a formulaic frame for which certain semantic roles are 
understood and expected. For example, the frame for the verb “to 
give” might require, at a minimum, an actor that does the giving, 
a participant that receives the gift, and an object that can be given 
or received. Semantic frames, such as obtained from WordNet [76], 
can be used to constrain relevant roles for a given action, and these 
roles can then be populated with appropriate concepts to generate 
complete utterances. 

In RSVP-iconCHAT, each message is subdivided into semantic roles 
(e.g. actor, action, participant, and object) and applicable vocabulary 
options are displayed using RSVP within each semantic role (Fig­
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Figure 9: Subset of Single-Action Picture Cards 

ure 8). This design uncouples required screen real estate and phys­
ical movement from the vocabulary size and instead ties them to the 
length of the desired message. For more advanced or more mobile 
users, the number of available semantic roles can be increased, en­
abling users to create longer and more complex messages; for begin­
ning users, or those with severely reduced mobility, the number of 
roles can be decreased to enable the creation of simpler messages 
with the same vocabulary. 

To construct a message using the RSVP-iconCHAT approach, users 
first select the desired verb or action. Once an action has been se­
lected, the corresponding semantic frame is displayed with semantic 
roles such as actor, actor modifier, participant, participant modifier, 
object, object modifier, quantity, and possessives. These roles are dis­
played as a set of fillable slots that are spatially organized around 
the verb. Each semantic role is then highlighted sequentially. Once a 
role has been selected, icons that can fulfill that role are displayed via 
RSVP and users can select a desired icon to populate the role. After 
an icon has been selected for a given semantic role, other roles are 
highlighted sequentially to allow users to populate as many roles as 
desired, and in any order. Articles (e.g. “a,” “an,” “the”) and prepo­
sitions (e.g. “in,” “of,” “to”) are automatically inserted to efficiently 
generate grammatically complete messages. At any point during mes­
sage construction, users can select the “command field” to perform 
conversational actions (e.g. “speak” or “clear” the current message). 
Selecting a “speak” command, for example, might send the message 
to an integrated TTS system, clear the current message, and prompt 
the user to begin constructing a new message. 

5.4 method 

We conducted a usability study involving a constrained message elic­
itation task for the purpose of exploring how potential users would 
interact with and respond to the interface. After a brief demonstra­
tion and training period, participants were shown a series of 30 pic­
ture scenes depicting simple actions (e.g. a boy drinking milk, a man 
combing his hair, and a woman reading a book) and asked to use our 
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Figure 10: Mean Sentence Lengths with RSVP-iconCHAT 

prototype RSVP-iconCHAT interface to create a sentence describing 
each scene (Figure 9). The order of the picture scenes was random­
ized across participants in order to observe behavior as users became 
more familiar with the system. Participants were directed to construct 
sentences that were as detailed as necessary such that, if the picture 
cards were shown to another person, that person would be able to 
match the appropriate description with the scene. 

Each experimental session was conducted in one 60 - 90 minute 
block per participant, and all sessions were conducted in a sound-
treated acoustic booth. Each participant was seated in a chair, or per­
sonal wheelchair, facing a computer screen. The space bar of a stan­
dard QWERTY keyboard was designated as the switch mechanism, 
and the RSVP process was configured to show images in alphabetical 
order using a timing mechanism with a starting speed of 700 millisec­
onds per image; however, participants could increase or decrease the 
speed in increments of 100 milliseconds per image. Participants were 
encouraged to change the RSVP speed whenever and however they 
preferred, either by pressing the up and down arrows on the key­
board or by requesting it verbally. The icon set, or vocabulary size, 
consisted of 106 items preselected for their relevance to the picture 
scenes and tagged within each of 8 possible semantic roles. After 
each session, participants were asked to provide qualitative feedback 
via an informal interview. 

Two groups of users were recruited: non-disabled (ND) users to 
provide a theoretical upper bound on performance, and users with 
speech and motor impairments (SMI) to provide a realistic evaluation 
from the target population. For the group of ND users, we recruited 
24 English-speaking adults from the greater Boston area, with no de­
clared speech, language, hearing, or cognitive impairments (10 males 
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and 14 females; mean age 24 years; age range 19 - 43). On average, 
each of these participants had approximately 3 years of formal edu­
cation following high school and spent approximately 11 hours per 
week using a computer. The ND users did not have prior exposure or 
experience with AAC devices. 

For the group of users with SMI, we recruited 4 additional English-
speaking adults from the greater Boston area (2 males and 2 females; 
mean age 41; age range 33 - 56). On average, each participant had 
approximately 4 years of formal education following high school and 
spent approximately 15 hours per week using a computer. Two of 
these participants (P1 and P2) had mild motor impairments; two (P3 
and P4) had moderate-to-severe motor impairments. All of these par­
ticipants used wheelchairs, except for P1 who used a walker. P1 and 
P2 had experience with AAC devices, but used unaided communi­
cation on a normal basis. P3 used both unaided communication and 
switch-based AAC. P4 was unable to use existing AAC systems and 
required the assistance of a caregiver to communicate. 

5.5 results 

Theoretically, the open-ended design of the task allowed for the pos­
sibility of users creating nonsensical sentences; however, in practice, 
there were no such instances. Because our prototype implementation 
required that every sentence contain at least a verb, the short possible 
sentence was one word in length. On average, both the ND partici­
pants and the participants with SMI created sentences consisting of 
5 words, excluding articles and prepositions that were automatically 
inserted by the system (Figure 10). Thus, users selected a verb and 
an average of 4 additional icons to construct descriptions of each pic­
ture scene. In fact, the participants with SMI created slightly more 
complex sentences, up to 6 additional words, on at least 2 occasions 
throughout the study. 

In terms of message construction speed, both groups of users showed 
similar learning curves, with the ND group achieving a final speed 
approximately 1.5 times faster than the group with SMI (Figure 11). 
The average time for constructing each of the last five sentences was 
70 seconds for the ND users and 107 seconds for the users with SMI. 

If users populated a semantic role more than once, even if they 
selected the same icon or cleared the role of any value, it was con­
sidered a self-correction. This metric was used to probe fatigue and 
learnability of the system. On average, ND users changed or deleted 
1 word per sentence before submission, compared to an average of 2 
word changes or deletions per sentence for the participants with SMI 
(Figure 12). 

During the study, ND users adjusted the RSVP speed an average 
of 10 times per sentence (Figure 13), returning to an average ending 
speed of approximately 700 milliseconds per image (Figure 14). In 
contrast, users with SMI adjusted the RSVP speed an average of 9 
times per sentence for the first 5 sentences and an average of once 
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Figure 11: Mean Message Construction Times with RSVP-iconCHAT 

Figure 12: Mean Number of Self-Corrections with RSVP-iconCHAT 
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Figure 13: Mean Number of RSVP Adjustments with RSVP-iconCHAT 

per sentence for the remaining 25 sentences, returning to an average 
ending speed of 1200 milliseconds per image. 

5.6 discussion 

This study examined user behavior while composing messages with 
the RSVP-iconCHAT interface and a single switch mechanism. The 
aim was to assess the learnability and ease-of-use of the system. Icon-
based message construction via RSVP proved to be learnable within 
less than 30 minutes for both user groups. Users were able to con­
struct messages of 4 - 7 words in approximately 1 minute, which 
is faster than some traditional letter-based systems [134], but users 
were unable to surpass the performance of conventional icon-based 
systems [78]. 

The results of our study suggest that expressiveness and generativ­
ity are not necessarily compromised by limiting selection tasks to a 
single key. In fact, both user groups constructed relevant sentences 
that were an average of 5 selected words in length. Examples of con­
structed messages included: “an old woman knitting a sweater,” “a 
small child drawing a house,” and “a man talking on a blue telephone 
with his friend.” Although this study did not replicate the social pres­
sures of realistic conversation rates, these sentences are longer and 
more complete than the simple 2 - 3 word sequences documented 
using some traditional icon-based systems [113]. 

Frequently changed RSVP speed throughout the course of the study 
suggests that users may have been unsatisfied with a constant presen­
tation speed and may have wanted to skip ahead to specific roles or 
icons. For ND users, the average of 10 changes per sentence suggests 
that participants increased the speed 5 times and then decreased the 
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Figure 14: Mean Ending RSVP Speeds with RSVP-iconCHAT 

speed 5 times, possibly to skip through a large number of undesir­
able words; however, this behavior was not displayed by the users 
with SMI (Figure 13). Although it is possible that the users with SMI 
found a comfortable speed within the first few sentences, it may have 
also required too much effort to change the RSVP speed more often, 
especially for those with moderate-to-severe motor impairments. 

Users with SMI appeared to prefer an RSVP speed approximately 
1.7 times slower than ND users, yet it is possible that they may be 
comfortable with faster RSVP speeds for other input modalities. For 
example, two users (P3 and P4) indicated they could have constructed 
messages more quickly if the interface were integrated with a sip­
and-puff device. Given that both ND participants and participants 
with SMI converged to consistent ending RSVP speeds, their respec­
tive presentation rates (Figure 14) may be appropriate defaults for 
physical input modalities, such as button presses. 

Two of the participants with SMI (P1 and P2) explored almost 
the entire vocabulary approximately halfway through the experiment. 
Additionally, a spike in self-correction for these users, at approxi­
mately sentence 13 (Figure 12), may indicate that they were exploring 
more expressive possibilities and testing the boundaries for sentence 
complexity. This phenomenon was not observed with ND users, pos­
sibly indicating different preferences between the two groups when 
familiarizing themselves with new communication interfaces. Self-
corrections may also be explained by mistaken selection of a word 
due to slow motor movement, which would have been a sustained 
problem for the users with SMI, even as familiarity with the system 
increased. 

While quantitative measurements of fatigue or cognitive load were 
not collected, qualitative feedback indicated that ND users felt “fid­
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gety” and “impatient” at having to wait for a desired icon to be dis­
played, but almost all users commented that the interface was “sim­
ple” and “easy to use.” One user with SMI (P1) also expressed impa­
tience at having to wait for the target icon; however, the other three 
users with SMI did not indicate any similar frustration. All 28 partic­
ipants noticed and favorably commented on the fact that the RSVP­
iconCHAT approach did not require them to capitalize words, conju­
gate verbs, or provide articles and prepositions. Two of the users with 
SMI (P1 and P3) remarked that they had not seen an existing AAC 
system with similar functionality, and several ND users asked if there 
were a way to enable this feature in their current mobile devices. 

5.7 summary 

Many individuals with severe speech and motor impairments use 
icon-based AAC systems with switches; however, these systems often 
require larger screens, use complex navigation hierarchies, or neces­
sitate repetitive head, neck, and eye movements. We aimed to design 
an alternative to conventional icon-based AAC systems that would re­
quire less screen real estate, yet still be easy to navigate and allow for 
sufficiently large vocabularies. RSVP was leveraged to display icons 
and reduce the required motor control to a single action. Furthermore, 
RSVP was combined with semantic frames to segment the screen into 
multiple fields and place the burden of search on the system rather 
than the user. By organizing vocabulary into semantic roles, rather 
than lexical categories, the display requirements of this approach are 
not tied to vocabulary size, but to the number of semantic roles nec­
essary to construct a desired message. 

The usability study suggests that an RSVP approach to icon-based 
message construction is a viable option for users with severe speech 
and motor impairments. Given that both cohorts of study partici­
pants were unfamiliar with the RSVP-iconCHAT approach, their per­
formance should be considered as a reasonable lower bound that can 
be expected to improve with practice. 

The RSVP-iconCHAT design has important implications for mo­
bile devices that have small screens and a limited number of buttons. 
Depending on the complexity of the desired message, the number of 
semantic roles can be chosen to match the available display space of a 
given mobile device. All search and prediction tasks can be delegated 
to the system, requiring only a single reliable selection mechanism for 
control. While the minimal control requirements are a single binary 
signal, as in the conducted usability study, control over the RSVP 
process can be expanded to include directional control of the display 
sequence or even the ability to modify RSVP speed. 

Our prototype implementation of RSVP-iconCHAT accepts key­
board entry or mouse clicks, but the design can be configured to work 
with eye blinks, muscle twitches, brain waves, or any other input that 
can be discretized into binary form. This interface is potentially bene­
ficial for users with profound impairments, such as those with locked­
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in syndrome who require EMG or BCI solutions. Because many EMG 
and BCI systems provide a single output signal, and RSVP-iconCHAT 
requires only a single input signal, integrating such signaling meth­
ods is feasible and likely to be successful. Once the need for a vol­
untary motor response is removed, natural language processing and 
machine learning could be used to dynamically reorder the sequences 
of suggested semantic roles and associated icons, further increasing 
communication speed. 
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6
S Y M B O L PAT H 

6.1 overview 

Icon-based AAC systems typically present users with arrays of icons 
that are sequentially selected to construct utterances, which are then 
spoken aloud using TTS. For touch-screen devices, users must lift 
their finger or hand to select individual icons and avoid selecting 
multiple icons at once. Because many individuals with severe speech 
impairments have concomitant limb impairments, repetitive and pre­
cise movements can be slow and effortful. The work in this chapter 
aims to enhance message formulation ease and speed by using con­
tinuous motion icon selection rather than discrete input. SymbolPath 
is an overlay module that can be integrated with existing icon-based 
AAC systems to enable continuous motion icon selection. Message 
formulation using SymbolPath consists of drawing a continuous path 
through a set of desired icons. The system then determines the most 
likely subset of desired icons on that path and rearranges them to 
form a meaningful and grammatical sentence. 

6.2 motivation 

Many individuals with speech impairments severe enough to pre­
clude spoken communication also have accompanying limb impair­
ments that must be considered when designing assistive communica­
tion interfaces [70, 59]. Icon-based AAC systems offer the potential 
for faster and less effortful message formulation compared to letter-
based systems [106] and thus are often used by individuals with com­
promised motor function; however, manual methods of icon selec­
tion on current icon-based AAC devices require precise and discrete 
movements that hinder communication rate and ease. Additionally, 
the complex and repetitive nature of discrete movements can further 
contribute to fatigue. Several letter-based approaches to continuous 
selection have demonstrated commercial success (e.g. Swype, SlideIT, 
TouchPal, and ShapeWriter [51]), but no such approaches currently 
exist for word-based or icon-based formulation. This project aims to 
enhance message formulation ease and communication rate by com­
bining continuous motion icon selection with a free-order language 
model. 

6.3 implementation 

SymbolPath is implemented in Python as an overlay module for tra­
ditional icon-based AAC systems. A simple single-layer array serves 
as the interface for the current work. The top row is dedicated to 
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Figure 15: Construction of “I Need More Coffee” with SymbolPath 

displaying the message being formulated and the remainder of the 
interface is arranged as a grid of candidate icons (Figure 15). Icons 
are grouped based on lexical roles: actors, verbs, objects, and mod­
ifers. Icon groups are color coded and arranged from left to right to 
mirror the subject-verb-object syntax in English. To formulate a mes­
sage, users create a continuous path through a set of desired icons. 
To further reduce the physical demands of message formulation, the 
order of icons on the path is not constrained by syntax: users can se­
lect icons in close physical proximity rather than in syntactical order. 
The only requirement is that a continuous path be drawn through 
all desired items without breaking contact with the interface. Dur­
ing message formulation, the treaded path is displayed for feedback. 
Once the user breaks the path or enters the message formulation 
window, the language module attempts to concatenate a meaning­
ful and syntactically accurate utterance from the set of selected icons. 
For example, a user might create a path traversing through the tar­
get words “need,” “coffee,” “I,” and “more,” as well as intermediary 
icons (e.g. “give,” “book,” and “window”), which are then pruned 
and reordered to generate the syntactically complete and most likely 
message “I need more coffee.” The text-to-speech synthesizer then 
voices the message. SymbolPath is compatible with any input modal­
ity that can provide a continuously varying analog signal such as a 
stylus, mouse, joystick, or laser pointer. 

Two major issues need to be resolved in order to enable continuous 
motion icon selection: (1) superset pruning, because the user’s path 
may include both target elements and bystander elements, and this 
superset must be pruned to yield the most likely desired candidates; 
and (2) syntactic reordering, because the user may have selected icons 
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Figure 16: Construction of “I Love My Dog” with SymbolPath 

in an unordered way and the system must reorder those icons in the 
proper syntax of the target language. 

Semantic disambiguation is required for situations in which re­
moving or reordering words could dramatically alter the meaning 
of the potential message. SymbolPath relies on a combination of se­
mantic frames, semantic grams, and physical characteristics of the 
path to generate a prioritized list of potential utterances. Although 
the demonstration version automatically selects the most likely utter­
ance to enhance communication speed, it can also display the list of 
potential utterances for user verification prior to speech generation. 

6.3.1 Semantic Frames 

Fundamental to the design and functionality of SymbolPath is the 
use of semantic frames [27], in which the predicate or verb of an 
utterance is the central element of a frame that can be filled by a 
set of relational items [85]. Thus, SymbolPath generates syntactically 
complete utterances by relying on the semantic frames of predicates 
in the selected path. Because each icon group is associated with a set 
of possible syntactic and semantic roles, the superset of selected icons 
is pruned by assessing subset probabilities within a given semantic 
frame. This approach provides a rudimentary solution to the issue 
of syntactic reordering, but does not address the issue of semantic 
disambiguation, especially with regard to assigning statistical values 
to potential utterances. 
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Figure 17: Construction of “I Am Happy” with SymbolPath 

6.3.2 Semantic Grams 

To prioritize the list of potential utterances, SymbolPath leverages 
prior work in the areas of subset completion and non-syntactic pre­
diction [125]. Specifically, semantic grams, or sem-grams, are used to 
assign each potential utterance a value that corresponds to the proba­
bility of that combination of words appearing in a sentence together, 
regardless of order. Semantic ambiguity is not a concern because lex­
ical roles are specified for each icon based on its grouping. 

6.3.3 Path Characteristics 

In addition to the probabilities of each potential utterance based on 
its semantic coherence, the physical characteristics of the path are also 
considered. Once the list of potential utterances has been prioritized 
semantically, the rankings are adjusted based on the two-dimensional 
collision space of the continuous motion path and each icon’s surface 
area. Icons that collided with a larger area of the user’s drawn path 
are assigned a greater likelihood than icons that were only marginally 
on the drawn path. 

6.4 discussion 

SymbolPath does not currently support complex utterances that con­
tain multiple verbs (e.g. “I like to play baseball”), utterances that con­
tain multiple actors and participants (e.g. “I like to play chess with 
my brother”), or utterances that make extensive use of modifiers (e.g. 
“I really drank that huge soda too quickly”). Although many of these 
situations can be supported through the use of semantic tagging, the 
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goal of SymbolPath is to incorporate automated solutions to these 
problems. One potential approach is to supplement sem-gram statis­
tics with corpus-based frame statistics in order to determine probabil­
ities for each semantic frame and its arguments. While large corpora 
of AAC messages are unavailable, there have been recent efforts to 
simulate corpora that may be useful for obtaining such frame statis­
tics [116]. Additionally, each user’s message formulation history may 
be used to automatically refine the language model between sessions. 
Future work on SymbolPath may also include smoothing of the phys­
ical path to accommodate users with hand or arm tremors, as well as 
a calibration mode to detect each user’s movement preferences and 
adjust the path’s physical characteristics accordingly. 
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7
D I G I T C H AT 

7.1 overview 

While almost all AAC users have speech impairments that preclude 
the use of verbal communication, they may also have varying levels 
of vision or motor impairments, perhaps due to age or the particu­
lar nature of their disorder. Speed, expressiveness, and ease of com­
munication are key factors in choosing an appropriate system; how­
ever, there are social considerations that are often overlooked. AAC 
systems are increasingly being used on mobile devices with smaller 
screens, in part because ambulatory AAC users may feel uncomfort­
able carrying around large or unusual machines. DigitCHAT is a pro­
totype AAC system designed for fast and expressive communication 
by literate AAC users with minimal upper limb motor impairments. 
DigitCHAT’s interface was designed to be used discretely on a mo­
bile phone and supports continuous motion input using a small set 
of visually separated buttons. 

7.2 motivation 

Depending upon the nature of their disorders, many AAC users may 
have accompanying motor impairments, such as tremors or reduced 
mobility of their hands and arms [36, 59]. They may also have vi­
sion impairments that make it difficult to see small font sizes. AAC 
systems that operate on small mobile devices often use on-screen key­
boards that were not designed for people with bigger hands or people 
with upper limb motor impairments. These keyboards usually occupy 
less than half of the available screen real estate and have small but­
tons that are positioned adjacent to each other. Many elderly users, 
much less users with diagnosed motor or vision impairments, have 
difficulty with these keyboards because of the button and font sizes 
[79]. Additionally, these systems tend to focus on the creation and 
use of stored utterances instead of real-time composition, unnecessar­
ily reducing the flexibility of conversation. The work in this chapter 
aims to address the need for an AAC system that can be used at con­
versational speeds on a small-screen mobile device by ambulatory 
users with mild upper limb motor impairments. Although intended 
for AAC users, this prototype system also has potential for non-AAC 
users who may be temporarily unable to use their voices. 

7.3 approach 

DigitCHAT enables rapid, face-to-face communication via small touch­
screen devices, such as mobile phones. The system uses large buttons 



[ December 14, 2014 at 13:12 – classicthesis ]

62 digitchat 

Figure 18: Example Path for “Hello” in DigitCHAT 

to assist users who may have difficulty making precise movements. 
Buttons are visually separated to maximize visibility when a user 
naturally obscures part of the screen by touching it. Additionally, the 
interface is organized as a telephone number pad to provide familiar­
ity, especially for older users, and reduce the amount of time required 
to learn the layout. 

To further increase communication speed and assist users with up­
per limb motor impairments, DigitCHAT supports two types of input: 
mixed and continuous. In mixed mode, users can provide a combina­
tion of discrete taps or non-contiguous path segments to specify the 
desired word. At any given time, the most likely word is displayed 
at the top of the screen, and can be selected by tapping it or ending a 
path on it. In continuous mode, users draw a single line through all 
desired buttons. As the user’s finger or stylus moves over the screen, 
the most likely word is displayed at the top of the screen. When the 
user disconnects from the screen’s surface, the most likely unigram 
is spoken aloud immediately. Users can cancel the current path, with­
out speaking the displayed word, by ending on the Stop or Cancel 
sign. With many current AAC systems, listeners must wait while the 
user composes a complete utterance [58, 130]. This waiting period 
places increased pressure on the AAC user to generate utterances 
as quickly as possible, creating uncomfortable silences and often en­
couraging the use of telegraphic utterances. By automatically speak­
ing each word as it is completed, DigitCHAT can significantly reduce 
these gaps and facilitate conversational turn-taking. 

DigitCHAT uses a predetermined vocabulary and dictionary-based 
implementation with unigram statistics based on the Crowdsourced 
AAC-Like Corpus [116]. Every word in the dictionary is converted 
into a physical path traversing a standard telephone number pad. The 
width of this path is incrementally varied up to the size of a standard 
button and all collisions are recorded as possible sequences that a 
user might take to specify a given word. These paths are then reverse­
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Figure 19: Example Sequence for “Feeling Great” in DigitCHAT 

Figure 20: Example Path for “Today” in DigitCHAT 

indexed, so that DigitCHAT can look up the user’s provided path 
and retrieve the set of words, with unigram probabilities, that the 
path could indicate. 

Words that share the same sequence of buttons are sometimes called 
“textonyms.” For example, the words “bat” and “cat” are textonyms 
because they are both specified with the discrete numeric sequence 
2-8 or the continuous motion sequence 2-5-8. DigitCHAT implements 
two approaches to resolving textonyms. In the first approach, the 
most likely textonym is displayed and users can scribble over the last 
button in their numeric sequence to rotate through possible textonyms. 
Users can disconnect from the screen to speak the displayed word 
aloud or end their scribbling on the Stop sign to cancel the utterance. 
In the second approach, DigitCHAT implements basic learning and 
remembers the user’s preferred textonym for any given path. 
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7.4 discussion 

We have made DigitCHAT freely available for Android devices on the 
Google Play Store in order to gauge interest and elicit feedback. Thus 
far, DigitCHAT has undergone two design and development itera­
tions based on suggestions from users in the target population. In ad­
dition to informal feedback from ad-hoc testers, we have received nar­
rative emails from three users and are preparing for a formal study 
with participants at a clinical facility that serves individuals with 
chronic neuromotor disorders. A common request, which has since 
been implemented, was to allow cancellation in order to prevent un­
expected or undesirable words from being spoken. We have created 
several user-configurable options, such as the movement threshold 
for textonym rotation, but it may be possible to implement a learning 
algorithm to discover the ideal values for these settings automatically. 
While the current version of DigitCHAT relies primarily on unigram 
statistics, we intend to look at potential improvements from using 
skip-grams or implementing phrasal prediction. We are also experi­
menting with different methods to efficiently add and remove words 
from the dictionary to allow for full vocabulary customization. 
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8
C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S 

This dissertation aimed to transform AAC systems from passive con­
duits into active, intelligent communication aids. The long-term vi­
sion is to create AAC systems that leverage user-specific information, 
adapt to a user’s behaviors and capabilities, and observe and act on 
situational context. Towards that end, this dissertation identifies and 
addresses three problematic assumptions commonly made by most 
icon-based AAC systems, as well as many letter-based AAC systems: 
Prescribed Order, Intended Set, and Discrete Entry. 

Research into semantic frame theory has become increasingly ac­
tive over the last few years, and this field has shown promise for use 
with message construction systems. This dissertation contributes a 
simple and fast language model, semantic grams, that is specifically 
designed for use with semantic frames. Semantic grams offer a flexi­
ble approach to predictive language modeling that does not require 
users to make selections in a particular order. Combining semantic 
frames with semantic grams enables free-order message construction 
for AAC, and this approach may continue to benefit from future ad­
vancements in semantic frame theory. 

Context-specific language distributions can be used to help com­
pensate for relaxed linguistic structure, enable more permissive in­
put, and further improve the performance of semantic grams. This 
dissertation contributes a prioritized list of contextual language pre­
dictors based on an empirical analysis of word distributions. Lever­
aging context can improve unordered prediction and error correction 
and enable AAC systems to seamlessly adapt to different situations 
and environments. 

Modern touchscreen technologies are challenging for many people 
with upper limb motor impairments; however, this dissertation shows 
that systematic approaches can be used to address these challenges. 
In particular, there are motor profile patterns even among highly di­
verse users, and static improvements can be made to accommodate 
these patterns. Mixed-mode or continuous motion input can be of­
fered as useful alternatives to discrete input. Additionally, this disser­
tation shows that diagnostic games can be used to obtain quantitative 
motor profiles in order to personalize touchscreen technologies to the 
capabilities and preferences of an individual user. 

Finally, this dissertation demonstrates that these algorithms and 
design approaches can be combined in different ways to create new, 
more intelligent interfaces: interfaces that can mitigate the need for 
linguistically and motorically precise user input to enhance the ease 
and efficiency of assistive communication. 
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TLX. Human Factors and Ergonomics Society, 52(19):1522–1526, 2008 

Review of the NASA TLX system for measuring mental 
workload; presents results of a case study with 200 par­
ticipants showing that TLX lacks scalar invariance; shows 
that mean TLX scores are not easily compared with invari­
ance measurements; provides an argument for using the 
shortened “Raw TLX” method, without pairwise compar­
isons. 

P. Demasco and K. McCoy. Generating text from compressed input: 
an intelligent interface for people with severe motor impairments. 
Communications of the ACM, 35(5):68–78, May 1992. ISSN 0001-0782. 
doi: 10.1145/129875.129881. URL http://dx.doi.org/10.1145/129875. 

129881 

“Sentence compansion” technique, in which users only 
select content words (semantically salient words) and the 
system expands the message into its syntactically correct 
form; this technique relies on the content words being se­
lected in syntactic order (no reordering is performed) and 
only expands function words; uses hand-coded syntactic 
rules and semantic labels. 

H. Fang and C. Zhai. Semantic term matching in axiomatic approaches 
to information retrieval. In Proceedings of the 29th annual international 
ACM SIGIR conference on research and development in information re­
trieval, SIGIR ’06, pages 115–122, New York, NY, USA, 2006. ACM. 
ISBN 1-59593-369-7. doi: 10.1145/1148170.1148193. URL http://dx. 

doi.org/10.1145/1148170.1148193 

Query approach for determining document relevance 
based on semantic term matching; presents an information-
theoretic approach that determines semantically similar 

http://dx
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http://dx.doi.org/10.1016/s0022-5371(66
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terms by looking at pre-judged relevant documents and 
tagging non-query words that have high mutual informa­
tion; uses those similar terms, and their similarity dis­
tances, to reweight potentially relevant documents during 
query time. 

C. J. Fillmore. Frame semantics and the nature of language. An­
nals of the New York Academy of Sciences, 280(Origins and Evolution of 
Language and Speech):20–32, October 1976. ISSN 1749-6632. doi: 10. 
1111/j.1749-6632.1976.tb25467.x. URL http://dx.doi.org/10.1111/ 

j.1749-6632.1976.tb25467.x 

Seminal work on frame semantics, an extension of case 
grammar, that describes semantic frames as a collection of 
facts that specify “characteristic features, attributes, and 
functions of a denotatum, and its characteristic interac­
tions with things necessarily or typically associated with 
it;” argues that one cannot understand a word without 
understanding its semantic frames and the associated se­
mantic roles of each frame; relates linguistic semantics to 
knowledge. 

M. Goel, J. Wobbrock, and S. Patel. GripSense: using built-in sensors 
to detect hand posture and pressure on commodity mobile phones. In 
Proceedings of the 25th annual ACM symposium on User interface software 
and technology, UIST ’12, pages 545–554, New York, NY, USA, 2012. 
ACM. ISBN 978-1-4503-1580-7. doi: 10.1145/2380116.2380184. URL 
http://dx.doi.org/10.1145/2380116.2380184 

Approach for determining which of 4 different hand 
postures someone is using to hold their mobile phone; 
requires only the built-in sensors of a standard mobile 
phone (e.g. accelerometer, inertial sensors, vibration mo­
tor, and touchscreen); detects one of 3 different levels of 
pressure being used on the touchscreen. 

D. Goldberg. Unistrokes for computerized interpretation of handwriting 
(US Patent #5596656). US Patent and Trademark Office, January 1997. 
URL http://www.patentlens.net/patentlens/patent/US_5596656/en/ 

Patent of a method for classifying continuous strokes, 
referred to as “unistrokes,” into sets of characters from a 
predetermined alphabet; allows for multiple characters to 
be drawn in a single, unbroken stroke; useful for convert­
ing handwritten text on a touchscreen into digitized text. 

F. Guenther, J. Brumberg, E. Wright, A. Nieto-Castanon, J. Tourville, 
M. Panko, R. Law, S. Siebert, J. Bartels, D. Andreasen, P. Ehirim, 
H. Mao, and P. Kennedy. A wireless Brain-Machine interface for Real-
Time speech synthesis. PLoS ONE, 4(12), December 2009. doi: 10. 
1371/journal.pone.0008218. URL http://dx.doi.org/10.1371/journal. 

pone.0008218 
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Case study of a patient with locked-in syndrome in
 
which a wireless BCI was used to monitor attempts to pro­
duce speech; attempted speech was converted into synthe­
sized vowel sounds with a feedback delay of 50 millisec­
onds.
 

J. P. Hansen, H. Lund, H. Aoki, and K. Itoh. Gaze communication 
systems for people with ALS. In ALS Communication Workshop, Yoko­
hama, Japan, pages 35–38, December 2006. URL http://www.cogain. 

org/w/images/a/a2/ALS_Workshop_Yokohama2006.pdf 

System description of GazeTalk, a multi-lingual typing
 
system based on eye tracking and dwell-time selection; in­
tended for users with ALS.
 

S. Hart and L. Staveland. Development of NASA-TLX (task load in­
dex): Results of empirical and theoretical research. Human mental 
workload, 1(3):139–183, 1988 

Results of multiple experiments on the effectiveness of
 
NASA’s initial TLX system; proposes a multi-dimensional
 
rating scale for six subjective, workload-related factors to
 
quantify total workload.
 

R. Hemayati, W. Meng, and C. Yu. Semantic-based grouping of search 
engine results using WordNet. In Proceedings of the joint 9th Asia-Pacific 
web and 8th international conference on web-age information management 
conference on Advances in data and web management, APWeb/WAIM’07, 
pages 678–686, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3­
540-72483-4. URL http://portal.acm.org/citation.cfm?id=1769795 

Approach for grouping semantically similar search en­
gine results, primarily to increase diversity, by using synsets
 
from WordNet; synsets are combined into super-synsets;
 
current approach only works for single-term queries.
 

J. Higginbotham, H. Shane, S. Russell, and K. Caves. Access to AAC: 
Present, past, and future. Augmentative and Alternative Communication, 
23(3):243–257, January 2007. ISSN 0743-4618. doi: 10.1080/07434610701571058. 
URL http://dx.doi.org/10.1080/07434610701571058 

Survey of AAC system types, design factors, and emerg­
ing technologies and approaches; reviews several studies
 
to provide communication rate estimates of 3 - 7 WPM for
 
scanning systems and 5 - 10 WPM for eye-tracking sys­
tems.
 

J. Higginbotham, A. Bisantz, M. Sunm, K. Adams, and F. Yik. The 
effect of context priming and task type on augmentative communica­
tion performance. Augmentative and Alternative Communication, 25(1): 
19–31, 2009 

Case study in which an AAC device was, or was not,
 
primed with task-specific vocabularies and tested on non-

AAC users; contextual priming had a small but significant
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effect on keystroke savings; higher level measurements of
 
communication rate, task performance, and user percep­
tions suggested keystroke savings that were not seen in
 
experiments; keystroke-based measurements may not be
 
predictive of task-level performance.
 

Y. How and M. Kan. Optimizing predictive text entry for short mes­
sage service on mobile phones. In Human Computer Interfaces Interna­
tional (HCII 05), 2005. URL http://citeseerx.ist.psu.edu/viewdoc/ 

summary?doi=10.1.1.96.638 

Remapping of letters to the 9-button telephone keypad
 
that is optimized for language patterns from a corpus
 
of text messages; optimization by genetic algorithms was
 
based partly on an operation-level model (OLM) of re­
quired time to perform certain physical movements on the
 
keypad.
 

A. Järvelin, A. Järvelin, and K. Järvelin. s-grams: Defining generalized 
n-grams for information retrieval. Information Processing & Manage­
ment, 43(4):1005–1019, July 2007. ISSN 03064573. doi: 10.1016/j.ipm. 
2006.09.016. URL http://dx.doi.org/10.1016/j.ipm.2006.09.016 

Enhanced definitions for using s-grams, where the “s”
 
stands for “skip,” as a generalization of n-grams in which
 
a number of characters (for letter-based s-grams) or words
 
(for word-based n-grams) are skipped to form the gram;
 
n-grams can be considered s-grams with a skip value of
 
zero, thus requiring adjacency; presents an enhancement
 
to Jaccard distance that is more sensitive to gram counts.
 

A. Jinks and B. Sinteff. Consumer response to AAC devices: Acquisi­
tion, training, use, and satisfaction. Augmentative and Alternative Com­
munication, 10(3):184–190, January 1994. doi: 10.1080/07434619412331276890. 
URL http://dx.doi.org/10.1080/07434619412331276890 

Case study that surveyed former patients of an AAC
 
rehabilitation center; there were 76 respondents between 3
 
and 79 years of age; 71% of respondents received devices
 
and 81% of those devices were taxpayer-funded; 53% of
 
respondents with CP continued using their AAC devices.
 

S. K. Kane, B. L. Church, K. Althoff, and D. McCall. What we talk 
about: designing a context-aware communication tool for people with 
aphasia. In Proceedings of the 14th international ACM SIGACCESS con­
ference on Computers and accessibility, ASSETS ’12, pages 49–56, New 
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1321-6. doi: 10.1145/ 
2384916.2384926. URL http://dx.doi.org/10.1145/2384916.2384926 

Context-aware, adaptive AAC system for people with
 
aphasia; context includes location (via GPS and 802.11),
 
user (via front camera), and conversation partner (via rear
 
camera).
 

http://dx.doi.org/10.1145/2384916.2384926
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G. Karberis and G. Kouroupetroglou. Transforming spontaneous tele­
graphic language to Well-Formed greek sentences for alternative and 
augmentative communication. In Proceedings of the Second Hellenic 
Conference on AI: Methods and Applications of Artificial Intelligence, SETN 
’02, pages 155–166, London, UK, UK, 2002. Springer-Verlag. ISBN 3­
540-43472-0. URL http://portal.acm.org/citation.cfm?id=645861. 

670294 

Telegraphic-to-Full Sentence (TtFS) module that converts 
telegraphic input (compressed, incomplete, grammatically 
and syntactically ill-formed) into full sentences that are 
grammatically and syntactically correct; designed for the 
Greek language; uses hand-coded information for each 
word in the lexicon; assumes that all content words are 
provided and basic order is correct for active voice Greek 
(subject then object). 

T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary 
detection. Computational Linguistics, 32(4):485–525, December 2006. 
ISSN 0891-2017. doi: 10.1162/coli.2006.32.4.485. URL http://dx.doi. 

org/10.1162/coli.2006.32.4.485 

Punkt sentence boundary detection (SBD), a language-
independent and unsupervised approach using only cri­
teria that are independent of context; especially relies on 
detection of abbreviations; defines abbreviations as tight 
collocations of truncated words with internal or final peri­
ods. 

H. Koester and S. Levine. Effect of a word prediction feature on user 
performance. Augmentative and Alternative Communication, 12(3):155– 
168, 1996 

Case study of 14 people who regularly use AAC, in­
cluding mouth-stick systems, and the effects of word pre­
diction on their typing speed for a “copy phrase” task; 
demonstrated that the increased cognitive and perceptual 
costs for using prediction can overwhelm keystroke gains; 
number of keystrokes was reduced, but keystroke time in­
creased. 

H. Koester and S. Levine. Keystroke-level models for user perfor­
mance with word prediction. Augmentative and Alternative Communi­
cation, 13(4), 1997 

Examines the estimated/theoretical and empirical per­
formance improvements of different keystroke savings mod­
els; presents four primary factors in correlating actual and 
estimated performance improvements from word predic­
tion: average number of searches per character, keystroke 
savings, keypress time, and prediction-list search time. 
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P. O. Kristensson and S. Zhai. SHARK2: a large vocabulary shorthand 
writing system for pen-based computers. In Proceedings of the 17th 
Annual ACM Symposium on User Interface Software and Technology, UIST 
’04, pages 43–52, New York, NY, USA, 2004. ACM. ISBN 1-58113-957­
8. doi: 10.1145/1029632.1029640. URL http://dx.doi.org/10.1145/ 

1029632.1029640 

Shorthand Aided Rapid Keyboarding (SHARK), that uses 
sokgraphs (shorthand defined on a keyboard as a graph) 
to recognize movement patterns on any letter-based key­
board from a precalculated mapping of patterns to words; 
tested vocabulary of roughly 20,000 sokgraphs; uses both 
shape and location to define the patterns. 

P. O. Kristensson and K. Vertanen. The potential of dwell-free eye-
typing for fast assistive gaze communication. In Proceedings of the 
Symposium on Eye Tracking Research and Applications, ETRA ’12, pages 
241–244, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1221­
9. doi: 10.1145/2168556.2168605. URL http://dx.doi.org/10.1145/ 

2168556.2168605 

Application of continuous motion typing (e.g. Swype, 
ShapeWriter, T9 Trace) for letter-based systems using eye-
tracking; shows improvement of 20 WPM for dwell-time 
eye-typing to over 40 WPM for dwell-free eye-typing; uses 
a theoretically perfect recognizer to give upper bound es­
timates. 

C. Kushler and R. Marsden. System and method for continuous stroke 
word-based text input (US Patent #7453439). US Patent and Trademark 
Office, November 2008. URL http://www.patentlens.net/patentlens/ 

patent/US_7453439/en/ 

Patent of a continuous motion typing system for letter-
based keyboards that uses a dictionary approach with ges­
tural thresholds (e.g. path angles) to perform lexical dis­
ambiguation on a superset of letters. 

G. Lesher, B. Moulton, and J. Higginbotham. Techniques for augment­
ing scanning communication. Augmentative and Alternative Communi­
cation, 14(2):81–101, January 1998. doi: 10.1080/07434619812331278236. 
URL http://dx.doi.org/10.1080/07434619812331278236 

Comparison of 14 different switch-based scanning tech­
niques for AAC, including both letter and word predic­
tion; the best character and word-based prediction tech­
niques each provided about 40% switch savings. 

G. Lesher and C. Sanelli. A Web-Based system for autonomous text 
corpus generation. In Proceedings of ISAAC, 2000. URL http://citeseerx. 

ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9386 

Automatic generation of large corpora by crawling the 
World Wide Web (WWW) and automatically tagging text 
blocks with information about genre, style, or education 
level. 

http://citeseerx
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G. Lesher and G. Rinkus. Domain-Specific word prediction for aug­
mentative communication. In Proceedings of the RESNA 2002 Annual 
Conference, 2002 

Method of deriving word prediction models from domain-
specific corpora; case study of using telephone transcripts 
from the Switchboard Corpus to generate models for 20 
different topic domains; shows benefit of using domain-
specific models; mentions idea of dynamically switching 
between statistical models, but does not present an ap­
proach. 

J. Li and G. Hirst. Semantic knowledge in word completion. In Pro­
ceedings of the 7th international ACM SIGACCESS conference on Comput­
ers and accessibility, Assets ’05, pages 121–128, New York, NY, USA, 
2005. ACM. ISBN 1-59593-159-7. doi: 10.1145/1090785.1090809. URL 
http://dx.doi.org/10.1145/1090785.1090809 

Approach to word prediction that merges n-gram prob­
abilities with semantic knowledge based on pointwise mu­
tual information, with a Lesk-like filter, of co-occurring
 
words in the British National Corpus (BNC); shows pre­
diction improvement as a keystroke savings of 14% for
 
completion of nouns.
 

J. Light, D. Beukelman, and J. Reichle. Communicative competence for 
individuals who use AAC: From research to effective practice. Paul H. 
Brookes Publishing Co., 2003 

Book about AAC research, systems, and therapeutic prac­
tices; surveys studies and demographic information show­
ing that many people with motor-speech impairments also 
have upper limb impairments that prevent the use of sign 
language or standard QWERTY keyboards. 

C. Lin and E. Hovy. Automatic evaluation of summaries using n-
gram co-occurrence statistics. In Proceedings of the 2003 Conference 
of the North American Chapter of the Association for Computational Lin­
guistics on Human Language Technology - Volume 1, NAACL ’03, pages 
71–78, Stroudsburg, PA, USA, 2003. Association for Computational 
Linguistics. doi: 10.3115/1073445.1073465. URL http://dx.doi.org/ 

10.3115/1073445.1073465 

Comparison of human evaluation and n-gram co-occurrence 
for determining how similar machine-produced texts are 
to human-produced texts for automatic summarization and 
translation tasks; shows that n-gram co-occurrence is a 
useful metric that could save on human evaluation efforts. 

G. Lindsay, J. Dockrell, M. Desforges, J. Law, and N. Peacey. Meeting 
the needs of children and young people with speech, language and 
communication difficulties. International Journal of Language & Commu­
nication Disorders, 45(4):448–460, July 2010. doi: 10.3109/13682820903165693. 
URL http://dx.doi.org/10.3109/13682820903165693 

http://dx.doi.org/10.3109/13682820903165693
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Six case studies consisting of interviews with program 
managers, teachers, and specialists in speech, language, 
and communication therapy centers across England; showed 
a lack of consistency in services and approaches; 7% of 
children entering school had significant speech and lan­
guage difficulties; 1% of children had severe and complex 
communication needs. 

Y. Lv and C. Zhai. Positional language models for information re­
trieval. In Proceedings of the 32nd international ACM SIGIR conference 
on Research and development in information retrieval, SIGIR ’09, pages 
299–306, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-483­
6. doi: 10.1145/1571941.1571994. URL http://dx.doi.org/10.1145/ 

1571941.1571994 

Combination of query-term proximity measurements and 
passage retrieval into a positional language model (PLM); 
breaks documents into “soft” passages based on term clus­
tering and density for each word position; presents 4 proximity-
based density functions to estimate PLMs, with the Gaus­
sian density kernel and Dirchlet smoothing performing 
the best. 

I. S. MacKenzie and R. W. Soukoreff. Text entry for mobile com­
puting: Models and methods, theory and practice. Human-computer 
Interaction, 17:147–198, 2002. doi: 10.1207/S15327051HCI172\&3\_2. 
URL http://dx.doi.org/10.1207/S15327051HCI172&3_2 

Survey of mobile, letter-based text entry techniques and 
combinations of Fitts’ law with language models; identi­
fies primary optimization techniques as language predic­
tion and movement minimization; shows that corpora of­
ten do not represent user language. 

I. S. MacKenzie and R. W. Soukoreff. Phrase sets for evaluating text 
entry techniques. In CHI ’03 Extended Abstracts on Human Factors in 
Computing Systems, CHI EA ’03, pages 754–755, New York, NY, USA, 
2003. ACM. ISBN 1-58113-637-4. doi: 10.1145/765891.765971. URL 
http://dx.doi.org/10.1145/765891.765971 

Collection of 500 phrases for use in testing letter-based 
text entry systems; ecologically validated to represent let­
ter and word frequencies in English. 

I. S. MacKenzie and T. Felzer. SAK: Scanning ambiguous keyboard 
for efficient one-key text entry. ACM Transactions on Computer-Human 
Interaction, 17(3), July 2010. ISSN 1073-0516. doi: 10.1145/1806923. 
1806925. URL http://dx.doi.org/10.1145/1806923.1806925 

A one-key scanning technique that uses an ambiguous, 
letter-based keyboard followed by word selection; letter-
selection step scans over an alphabet split into 3 keys plus 
a space; word-selection step uses word prediction based 
on frequency; used able-bodied participants. 

http://dx.doi.org/10.1145/1806923.1806925
http://dx.doi.org/10.1145/765891.765971
http://dx.doi.org/10.1207/S15327051HCI172&3_2
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B. MacWhinney. The CHILDES Project: Tools for Analyzing Talk. Lawrence 
Erlbaum, 2000 

Book describing the CHILDES project, which collects 
conversational interactions from children, their caregivers 
and siblings, as well as bilingual children, second-language 
learners, and children with various types of language dis­
abilities. 

B. MacWhinney. The TalkBank project. creating and digitizing lan­
guage corpora: Volume 1, synchronic databases, 2007 

Chapter of a book describing the TalkBank project, which 
collects corpora of first language acquisition, second lan­
guage acquisition, conversation analysis, classroom dis­
course, and aphasic language; CHILDES is a sub-project 
of TalkBank. 

C. Marvin, D. Beukelman, and D. Bilyeu. Vocabulary-use patterns in 
preschool children: Effects of context and time sampling. Augmenta­
tive and Alternative Communication, 10(4):224–236, January 1994. doi: 
10.1080/07434619412331276930. URL http://dx.doi.org/10.1080/ 

07434619412331276930 

Case study of vocabulary usage by 10 non-disabled, preschool-
aged children; similar vocabulary was used at home and 
at school; reviews vocabulary designs of AAC systems; 
suggests core vocabulary is 20% of total and structure 
(function) words are 2% of total. 

J. Matas, P. Mathy-Laikko, D. Beukelman, and K. Legresley. Identi­
fying the nonspeaking population: a demographic study. Augmenta­
tive and Alternative Communication, 1(1):17–31, December 1985. doi: 
10.1080/07434618512331273491. URL http://dx.doi.org/10.1080/ 

07434618512331273491 

Two studies in Washington state to determine the size, 
characteristics, and intervention needs of school-age non­
speaking students; estimated 3 - 5 potential AAC users 
per 1,000 students. 

J. Matiasek and M. Baroni. Exploiting long distance collocational re­
lations in predictive typing. In Proceedings of the 2003 EACL Workshop 
on Language Modeling for Text Entry Methods, TextEntry ’03, pages 1–8, 
Stroudsburg, PA, USA, 2003. Association for Computational Linguis­
tics. URL http://portal.acm.org/citation.cfm?id=1628196 

Collocation-based word prediction using mutual infor­
mation within a fixed window size of 50 words; only used 
pairs of semantically related words (300,000 pairs); hand-
tuned and fixed weighting for frequencies of unigrams, 
bigrams, and collocations. 

http://portal.acm.org/citation.cfm?id=1628196
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K. McCoy, C. Pennington, and A. Badman. Compansion: From re­
search prototype to practical integration. Natural Language Engineer­
ing, 4(01):73–95, 1998. URL http://journals.cambridge.org/action/ 

displayAbstract?fromPage=online&aid=48437 

Continuation of work on “Compansion” technique that 
expands telegraphic input by adding function words and 
conjugation to an in-order stream of content words based 
on hand-coded rules; presents plans for practical imple­
mentation of an intelligent parser/generator (IPG). 

M. Mehl, S. Vazire, N. Ramírez-Esparza, R. Slatcher, and J. Pennebaker. 
Are women really more talkative than men? Science, 317(5834):82, 
July 2007. ISSN 1095-9203. doi: 10.1126/science.1139940. URL http: 

//dx.doi.org/10.1126/science.1139940 

Longitudinal study of 400 college students in the U.S. 
and Mexico that sampled their speech using electronically 
activated recording (EAR) devices; showed that, on aver­
age, both men and women speak about 16,000 words per 
day, of which 32% (about 5,000) were unique words. 

K. R. Muller and B. Blankertz. Toward noninvasive brain-computer 
interfaces. Signal Processing Magazine, IEEE, 23(5), 2006. ISSN 1053­
5888. doi: 10.1109/msp.2006.1708426. URL http://dx.doi.org/10. 

1109/msp.2006.1708426 

Hex-o-Spell BCI system for letter-based typing that uses 
surface-level electroencephalography (EEG) and 2-signal 
motor imagery; typing rate was 2 - 8 characters per minute 
and called “world-class spelling speed” for a BCI system 
on untrained users. 

J. Nielsen and R. Molich. Heuristic evaluation of user interfaces. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems, CHI ’90, pages 249–256, New York, NY, USA, 1990. ACM. 
doi: 10.1145/97243.97281. URL http://doi.acm.org/10.1145/97243. 

97281 

Efficiency and accuracy of heuristic evaluation of user 
interfaces using Molich and Nielsen’s “9 Heuristics;” shows 
that 3 - 5 people is the optimal group size for heuristic 
evaluations. 

S. Nikolova, M. Tremaine, and P. Cook. Click on bake to get cookies: 
guiding word-finding with semantic associations. In Proceedings of 
the 12th international ACM SIGACCESS conference on Computers and 
accessibility, ASSETS ’10, pages 155–162, New York, NY, USA, 2010. 
ACM. ISBN 978-1-60558-881-0. doi: 10.1145/1878803.1878832. URL 
http://dx.doi.org/10.1145/1878803.1878832 

Visual Vocabulary for Aphasia (ViVA), a semantically 
organized vocabulary network based on Lingraphica’s vo­
cabulary structure, intended for AAC systems used by 
people with aphasia. 
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R. Patel, S. Pilato, and D. Roy. Beyond linear syntax: An Image-
Oriented communication aid. Journal of Assistive Technology Outcomes 
and Benefits, 1:57–66, 2004 

IconCHAT, an icon-based AAC system that uses case 
grammar to allow for verb-first, non-linear message con­
struction. 

M. F. Porter. An algorithm for suffix stripping. In K. S. Jones and 
P. Willett, editors, Readings in information retrieval, pages 313–316. Mor­
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN 1­
55860-454-5. URL http://portal.acm.org/citation.cfm?id=275705 

Porter stemming algorithm that uses suffix-stripping tech­
niques to approximate lemmatization for the English lan­
guage. 

D. Rashid and N. Smith. Relative keyboard input system. In Pro­
ceedings of the 13th international conference on Intelligent user interfaces, 
IUI ’08, pages 397–400, New York, NY, USA, 2008. ACM. ISBN 978-1­
59593-987-6. doi: 10.1145/1378773.1378839. URL http://dx.doi.org/ 

10.1145/1378773.1378839 

Letter-based input system that uses a blank touch-screen 
and touch-typing; single word input sequences are disam­
biguated by the relative positioning of touch locations and 
a dictionary. 

B. Roark, J. D. Villiers, C. Gibbons, and M. F. Oken. Scanning meth­
ods and language modeling for binary switch typing. In Proceedings 
of the NAACL HLT 2010 Workshop on Speech and Language Processing 
for Assistive Technologies, SLPAT ’10, pages 28–36, Stroudsburg, PA, 
USA, 2010. Association for Computational Linguistics. URL http: 

//portal.acm.org/citation.cfm?id=1867754 

Comparison of row-column scanning, Huffman scan­
ning, and RSVP for letter-based AAC; shows that language 
modelling is a big factor in accuracy and speed of Huff­
man approach; RSVP was slower than row-column scan­
ning with the same language model. 

B. C. Roy, M. C. Frank, and D. Roy. Relating activity contexts to early 
word learning in dense longitudinal data. In Proceedings of the 34th 
Annual Meeting of the Cognitive Science Society, 2012 

Results from the Human Speechome corpus showing 
that a child’s word acquisition and usage is contextually 
related to location and activity. 

J. Schler, M. Koppel, S. Argamon, and J. Pennebaker. Effects of age 
and gender on blogging. In Proc. of AAAI Spring Symposium on Com­
putational Approaches for Analyzing Weblogs, March 2006 
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Analysis of 700,000 posts by 20,000 bloggers over a month 
shows that there are differences in writing style and con­
tent between males, females, and writers of different ages; 
age and gender can be predicted given writing samples; 
creation of the freely available Blog Authorship Corpus. 

W. Schramm. How communication works. the process and effects of 
mass communication. Urbana: University of Illinois Press, 1954 

Continuation of work on the Shannon-Weaver model 
of communication to incorporate full reciprocity (i.e. feed­
back) via effects and interaction; reformulation as SMCR. 

C. E. Shannon. A mathematical theory of communication. Bell System 
Technical Journal, 27:379–423, July 1948. doi: 10.1145/584091.584093. 
URL http://dx.doi.org/10.1145/584091.584093 

Seminal work on information theory; models informa­
tion with a logarithmic measure, usually binary digits (bits); 
models communication with 5 components: an informa­
tion source, a transmitter, a channel, a receiver, and a des­
tination. 

C. E. Shannon and W. Weaver. The mathematical theory of communi­
cation. University of Illinois Press, 19(7):1, 1949 

Formalization, clarification, and repackaging of work 
on information and communication theory; asserts defi­
nitions for formal problems of communication. 
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text processing. IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, PAMI-1(2):164–172, April 1979. ISSN 0162-8828. doi: 10.1109/ 
tpami.1979.4766902. URL http://dx.doi.org/10.1109/tpami.1979. 

4766902 

Representative work on letter-based n-grams in natural 
language processing; analyzes a corpus of 1 million words 
and presents frequency statistics. 
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prototype system for nonspeaking people with physical disabilities. 
Applied Psycholinguistics, 15(01):45–73, 1994. doi: 10.1017/s0142716400006974. 
URL http://dx.doi.org/10.1017/s0142716400006974 

Simulated results of using an utterance-based AAC sys­
tem that follows predicted sequences of speech acts; given
 
a specific topic, conversations progressed quickly and were
 
recoverable.
 

J. Todman. Rate and quality of conversations using a text-storage 
AAC system: Single-case training study. Augmentative and Alternative 
Communication, pages 164–179, September 2000. ISSN 0743-4618. doi: 
10.1080/07434610012331279024. URL http://dx.doi.org/10.1080/ 
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TALK system that incorporates multiple AAC features, 
such as labels that hide shuffled selections (e.g. “Hi,” “Hello,” 
“Hi there”), subsequent moves based on turns, holistic 
phrases, advance planning based on conversational progress, 
and feedback utterances (e.g. “uh-huh”); results of a single-
user case study showed communication rates of 30 WPM. 

H. Trinh, A. Waller, K. Vertanen, P. A. Kristensson, and V. Hanson. iS-
CAN: a phoneme-based predictive communication aid for nonspeak­
ing individuals. In Proceedings of the 14th international ACM SIGAC­
CESS conference on Computers and accessibility, ASSETS ’12, pages 57– 
64, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1321-6. doi: 10. 
1145/2384916.2384927. URL http://dx.doi.org/10.1145/2384916. 

2384927 

Predictive AAC system based on 42 phonemes (17 vow­
els and 25 consonants); uses mixture model with 6-gram 
phonemes and 3-gram words; tested on 16 able-bodied 
participants and 1 cerebral palsied participant. 

K. Trnka, D. Yarrington, K. McCoy, and C. Pennington. Topic mod­
eling in fringe word prediction for AAC. In Proceedings of the 11th 
international conference on Intelligent user interfaces, IUI ’06, pages 276– 
278, New York, NY, USA, 2006. ACM. ISBN 1-59593-287-9. doi: 10. 
1145/1111449.1111509. URL http://dx.doi.org/10.1145/1111449. 

1111509 

Comparison of two topic-modelling algorithms for letter-
based prediction, using trigrams, of fringe words for AAC. 

K. Trnka and K. McCoy. Corpus studies in word prediction. In Pro­
ceedings of the 9th international ACM SIGACCESS conference on Comput­
ers and accessibility, Assets ’07, pages 195–202, New York, NY, USA, 
2007. ACM. ISBN 978-1-59593-573-1. doi: 10.1145/1296843.1296877. 
URL http://dx.doi.org/10.1145/1296843.1296877 

Survey of corpus studies for AAC; shows that no large, 
authentic AAC corpora exist; shows that approximations, 
such as with out-of-domain data, are useful even with ad­
vanced language modeling techniques, such as topic mod­
eling. 

E. Tzoukermann, J. Klavans, and C. Jacquemin. Effective use of natu­
ral language processing techniques for automatic conflation of multi-
word terms: the role of derivational morphology, part of speech tag­
ging, and shallow parsing. SIGIR Forum, 31(SI):148–155, July 1997. 
ISSN 0163-5840. doi: 10.1145/278459.258554. URL http://dx.doi. 

org/10.1145/278459.258554 

Description of system that uses NLP techniques, espe­
cially derivational morphology and phrasal relations, to 
determine semantically related terms for information re­
trieval. 
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O. Udwin and W. Yule. Augmentative communication systems taught 
to cerebral palsied children - a longitudinal study:I. the acquisition 
of signs and symbols, and syntactic aspects of their use over time. 
British Journal of Disorders of Communication, 25(3):295–309, January 
1990. doi: 10.3109/13682829009011979. URL http://dx.doi.org/10. 

3109/13682829009011979 

Year-long observation of conversational behavior by 40 
cerebral-palsied children with language impairments showed 
that 80% of utterances could be labelled using just 4 cat­
egories; sign and symbol AAC systems being used were 
severely restrictive. 

H. Van Balkom and M. Welle Donker-Gimbrere. A psycholinguistic 
approach to graphic language use. Augmentative and alternative com­
munication: European Perspectives, pages 153–170, 1996 

Examination of language production behaviors in users 
of graphical AAC systems shows shorter and less com­
plete narratives, single-word utterances, and shorter aver­
age sentences. 

A. Van Den Bosch. Scalable classification-based word prediction and 
confusible correction. Traitement Automatique des Langues, 46(2):39–63, 
2006 

Application of a IGTree, a decision-tree algorithm for 
multi-label classification, to word prediction suggests that 
prediction accuracy increases at a log-linear rate with more 
training data; discarding low-frequency words from train­
ing data (i.e. the long tail) does not improve results; left­
context-only prediction is not as good as left-and-right­
context prediction. 

A. Van Den Bosch and P. Berck. Memory-based machine translation 
and language modeling. In The Prague Bulletin of Mathematical Linguis­
tics, 2009. URL http://citeseerx.ist.psu.edu/viewdoc/summary? 

doi=10.1.1.189.5165 

Memory-based machine translation (MBMT) that maps 
all possible trigram translations in a source language to 
trigrams in a target language; full sentence translation ex­
ploits overlaps. 

K. Vertanen and P. O. Kristensson. The imagination of crowds: Con­
versational AAC language modeling using crowdsourcing and large 
data sources. In Proceedings of the Conference on Empirical Methods in 
Natural Language Processing (EMNLP), pages 700–711. ACL, 2011 

Creation of a fake AAC corpus by crowdsourcing non-
AAC users and asking what they would say if they were 
AAC users; seed corpus (6,000 utterances) amplified by 
searching Twitter, Usenet, and other corpora for utterances 
with low word-error rate (WER) and low cross-entropy 
per word. 
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T. Walsh. Utterance-based systems: organization and design of AAC 
interfaces. In Proceedings of the 12th international ACM SIGACCESS 
conference on Computers and accessibility, ASSETS ’10, pages 327–328, 
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-881-0. doi: 10. 
1145/1878803.1878895. URL http://dx.doi.org/10.1145/1878803. 

1878895 

Guided, full-utterance AAC system that uses activity 
contexts and limited word substitution with optional key­
board input and button relabelling. 

T. Wandmacher and J. Antoine. Training language models without 
appropriate language resources: Experiments with an AAC system 
for disabled people. In Proceedings of LREC, 2006. URL http:// 

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.1815 

Comparison of three techniques to reduce the depen­
dence of statistical language models on their training re­
sources: cache model that augments probabilities of last
 
N inserted words, a user dictionary, and interpolation be­
tween a base model and a dynamic user model; the dy­
namic user model worked best (trigrams with a linear in­
terpolation and EM-like weighting).
 

S. J. Westerman and T. Cribbin. Mapping semantic information in 
virtual space: dimensions, variance and individual differences. In­
ternational Journal of Human-Computer Studies, 53(5):765–787, Novem­
ber 2000. ISSN 10715819. doi: 10.1006/ijhc.2000.0417. URL http: 

//dx.doi.org/10.1006/ijhc.2000.0417 

Comparison of 2D and 3D organization of semantic in­
formation for manual search; suggests that the amount
 
of additional semantic content in 3D representation is un­
likely to be worth the additional cognitive demands of a
 
third dimension.
 

J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan. 
Brain-computer interfaces for communication and control. Clinical 
Neurophysiology, 113(6):767–791, June 2002. ISSN 13882457. doi: 10. 
1016/s1388-2457(02)00057-3. URL http://dx.doi.org/10.1016/s1388-2457(02) 

00057-3 

Survey of BCI systems for communication and control 
operations; current systems have maximum information 
transfer rates of 10 - 25 bits per minute. 

J. Wolpaw. Brain-computer interfaces (BCIs) for communication and 
control. In Proceedings of the 9th international ACM SIGACCESS con­
ference on Computers and accessibility, Assets ’07, pages 1–2, New York, 
NY, USA, 2007. ACM. ISBN 978-1-59593-573-1. doi: 10.1145/1296843. 
1296845. URL http://dx.doi.org/10.1145/1296843.1296845 

Surface-level EEG, P300 BCI system being distributed
 
for testing in user homes.
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X. Zhang and S. MacKenzie. Evaluating eye tracking with ISO 9241 
- part 9. In Proceedings of the 12th international conference on Human-
computer interaction: intelligent multimodal interaction environments, HCI’07, 
pages 779–788, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3­
540-73108-5. URL http://portal.acm.org/citation.cfm?id=1769678 

First evaluation of eye-tracking techniques using the eval­
uation standard in International Standards Organization 
(ISO) 9241-9; comparison of three techniques: long dwell-
time, short dwell-time, and keypress during fixation; key­
press during fixation was best with throughput of 3.8 bits 
of information per second compared to 4.7 bits for a stan­
dard computer mouse. 
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